Skip to main content

Studying Macrophages in the Murine Steatotic Liver Using Flow Cytometry and Confocal Microscopy

  • Protocol
  • First Online:
Tissue-Resident Macrophages

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2713))

Abstract

The study of macrophage functions in the context of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction associated steatohepatitis (MASH) has been hampered by the fact that until recently all macrophages in the liver were thought to be Kupffer cells, the resident macrophages of the liver. With the advent of single-cell technologies, it is now clear that the steatotic liver harbors many distinct populations of macrophages, likely each with their own unique functions as well as subsets of monocytes and dendritic cells which can be difficult to discriminate from one another. Here, we detail the protocols we utilize to (i) induce MASLD/MASH in mice, (ii) isolate cells from the steatotic liver, and (iii) describe reliable gating strategies, which can be used to identify the different subsets of myeloid cells. Finally, we also discuss the issue of increased autofluorescence in the steatotic liver and the techniques we use to minimize this both for flow cytometry and confocal microscopy analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Byrne CD, Targher G (2015) NAFLD: a multisystem disease. J Hepatol 62:S47–S64. https://doi.org/10.1016/j.jhep.2014.12.012

    Article  PubMed  Google Scholar 

  2. Buzzetti E, Pinzani M, Tsochatzis EA (2016) The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metab Clin Exp 65:1038–1048. https://doi.org/10.1016/j.metabol.2015.12.012

    Article  CAS  PubMed  Google Scholar 

  3. Guilliams M, Bonnardel J, Haest B et al (2022) Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 185:379–396.e38. https://doi.org/10.1016/j.cell.2021.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Remmerie A, Martens L, Thoné T et al (2020) Osteopontin expression identifies a subset of recruited macrophages distinct from Kupffer cells in the fatty liver. Immunity 53:641–657.e14. https://doi.org/10.1016/j.immuni.2020.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Devisscher L, Scott CL, Lefere S et al (2017) Non-alcoholic steatohepatitis induces transient changes within the liver macrophage pool. Cell Immunol 322:74–83. https://doi.org/10.1016/j.cellimm.2017.10.006

    Article  CAS  PubMed  Google Scholar 

  6. Tran S, Baba I, Poupel L et al (2020) Impaired Kupffer cell self-renewal alters the liver response to lipid overload during non-alcoholic steatohepatitis. Immunity 53:627–640.e5. https://doi.org/10.1016/j.immuni.2020.06.003

    Article  CAS  PubMed  Google Scholar 

  7. Xiong X, Kuang H, Ansari S et al (2019) Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell Secretome gene analysis. Mol Cell 75:644–660.e5. https://doi.org/10.1016/j.molcel.2019.07.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Seidman JS, Troutman TD, Sakai M et al (2020) Niche-specific reprogramming of epigenetic landscapes drives myeloid cell diversity in nonalcoholic steatohepatitis. Immunity. https://doi.org/10.1016/j.immuni.2020.04.001

  9. Krenkel O, Hundertmark J, Abdallah AT et al (2019) Myeloid cells in liver and bone marrow acquire a functionally distinct inflammatory phenotype during obesity-related steatohepatitis. Gut. https://doi.org/10.1136/gutjnl-2019-318382

  10. Matsumoto M, Hada N, Sakamaki Y et al (2013) An improved mouse model that rapidly develops fibrosis in non-alcoholic steatohepatitis. Int J Exp Pathol 94:93–103. https://doi.org/10.1111/iep.12008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ganz M, Bukong TN, Csak T et al (2015) Progression of non-alcoholic steatosis to steatohepatitis and fibrosis parallels cumulative accumulation of danger signals that promote inflammation and liver tumors in a high fat-cholesterol-sugar diet model in mice. J Transl Med 13:193. https://doi.org/10.1186/s12967-015-0552-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Caballero F, Fernández A, Matías N et al (2010) Specific contribution of methionine and choline in nutritional nonalcoholic steatohepatitis: impact on mitochondrial S-Adenosyl-l-Methionine and Glutathione*. J Biol Chem 285:18528–18536. https://doi.org/10.1074/jbc.m109.099333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sugasawa T, Ono S, Yonamine M et al (2021) One week of CDAHFD induces steatohepatitis and mitochondrial dysfunction with oxidative stress in liver. Int J Mol Sci 22:5851. https://doi.org/10.3390/ijms22115851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hoffmann C, Djerir NEH, Danckaert A et al (2020) Hepatic stellate cell hypertrophy is associated with metabolic liver fibrosis. Sci Rep-UK 10:3850. https://doi.org/10.1038/s41598-020-60615-0

    Article  CAS  Google Scholar 

  15. Rokugawa T, Konishi H, Ito M et al (2018) Evaluation of hepatic integrin αvβ3 expression in non-alcoholic steatohepatitis (NASH) model mouse by 18F-FPP-RGD2 PET. EJNMMI Res 8:40. https://doi.org/10.1186/s13550-018-0394-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ikawa-Yoshida A, Matsuo S, Kato A et al (2017) Hepatocellular carcinoma in a mouse model fed a choline-deficient, L-amino acid-defined, high-fat diet. Int J Exp Pathol 98:221–233. https://doi.org/10.1111/iep.12240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mederacke I, Dapito DH, Affò S et al (2015) High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers. Nat Protoc 10:305–315. https://doi.org/10.1038/nprot.2015.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bonnardel J, T’Jonck W, Gaublomme D et al (2019) Stellate cells, hepatocytes, and endothelial cells imprint the Kupffer cell identity on monocytes colonizing the liver macrophage niche. Immunity 51:638–654.e9. https://doi.org/10.1016/j.immuni.2019.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wake K (2004) Karl Wilhelm Kupffer and his contributions to modern hepatology. Comp Hepatol 3:S2. https://doi.org/10.1186/1476-5926-2-s1-s2

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kupffer C (1876) Ueber Sternzellen der Leber: Briefliche Mittheilung an Prof. Waldeyer. Arch Mikr Anat 12:353–358. https://doi.org/10.1007/bf02933897

    Article  Google Scholar 

  21. Browicz T (1899) Ueber intravasculäre Zellen in den Blutcapillaren der Leberacini. Arch Mikrosk Anat 55:420–426. https://doi.org/10.1007/bf02977740

    Article  Google Scholar 

  22. Sródka A, Gryglewski RW, Szczepariski W (2006) Browicz or Kupffer cells? Pol J Pathol 57:183–185

    PubMed  Google Scholar 

  23. Guilliams M, Scott CL (2022) Liver macrophages in health and disease. Immunity 55:1515–1529. https://doi.org/10.1016/j.immuni.2022.08.002

    Article  CAS  PubMed  Google Scholar 

  24. Scott CL, Zheng F, Baetselier PD et al (2016) Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat Commun 7:10321. https://doi.org/10.1038/ncomms10321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sierro F, Evrard M, Rizzetto S et al (2017) A liver capsular network of monocyte-derived macrophages restricts hepatic dissemination of intraperitoneal bacteria by neutrophil recruitment. Immunity 47:374–388.e6. https://doi.org/10.1016/j.immuni.2017.07.018

    Article  CAS  PubMed  Google Scholar 

  26. Daemen S, Gainullina A, Kalugotla G et al (2021) Dynamic shifts in the composition of resident and recruited macrophages influence tissue remodeling in NASH. Cell Rep 34:108626. https://doi.org/10.1016/j.celrep.2020.108626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Simone GD, Andreata F, Bleriot C et al (2021) Identification of a Kupffer cell subset capable of reverting the T cell dysfunction induced by hepatocellular priming. Immunity 54:2089–2100.e8. https://doi.org/10.1016/j.immuni.2021.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blériot C, Barreby E, Dunsmore G et al (2021) A subset of Kupffer cells regulates metabolism through the expression of CD36. Immunity 54:2101–2116.e6. https://doi.org/10.1016/j.immuni.2021.08.006

    Article  CAS  PubMed  Google Scholar 

  29. Iannacone M, Blériot C, Andreata F et al (2022) Response to contamination of isolated mouse Kupffer cells with liver sinusoidal endothelial cells. Immunity 55:1141–1142. https://doi.org/10.1016/j.immuni.2022.06.012

    Article  CAS  PubMed  Google Scholar 

  30. Hume DA, Offermanns S, Bonnavion R (2022) Contamination of isolated mouse Kupffer cells with liver sinusoidal endothelial cells. Immunity 55:1139–1140. https://doi.org/10.1016/j.immuni.2022.06.010

    Article  CAS  PubMed  Google Scholar 

  31. Saif M, Kwanten WJ, Carr JA et al (2020) Non-invasive monitoring of chronic liver disease via near-infrared and shortwave-infrared imaging of endogenous lipofuscin. Nat Biomed Eng 4:801–813. https://doi.org/10.1038/s41551-020-0569-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Johnny Bonnardel who developed the in vivo perfusion protocol and the microscopy protocols on healthy liver tissue that were adapted here for use on the steatotic livers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte L. Scott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, Z., Louwe, P.A., Scott, C.L. (2024). Studying Macrophages in the Murine Steatotic Liver Using Flow Cytometry and Confocal Microscopy. In: Mass, E. (eds) Tissue-Resident Macrophages. Methods in Molecular Biology, vol 2713. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3437-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3437-0_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3436-3

  • Online ISBN: 978-1-0716-3437-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics