Skip to main content

Molecular Dynamics Simulations of RNA Motifs to Guide the Architectural Parameters and Design Principles of RNA Nanostructures

  • Protocol
  • First Online:
RNA Nanostructures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2709))

  • 332 Accesses

Abstract

Molecular dynamics (MD) simulations can be used to investigate the stability and conformational characteristics of RNA nanostructures. However, MD simulations of an RNA nanostructure is computationally expensive due to the size of nanostructure and the number of atoms. Alternatively, MD simulations of RNA motifs can be used to estimate the conformational stability of constructed RNA nanostructure due to their small sizes. In this chapter, we introduce the preparation and MD simulations of two RNA kissing loop (KL) motifs, a linear KL complex and a bent KL complex, and an RNA nanoring. The initial solvated system and topology files of each system will be prepared by two major force fields, AMBER and CHARMM force fields. MD simulations will be performed by NAMD simulation package, which can accept both force fields. In addition, we will introduce the use of the AMBER cpptraj program and visual molecular dynamics (VMD) for data analysis. We will also discuss how MD simulations of two KL motifs can be used to estimate the conformation and stability of RNA nanoring as well as to explain the vibrational characteristics of RNA nanoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Leontis NB, Stombaugh J, Westhof E (2002) The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Res 30:3497–3531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jaeger L, Westhof E, Leontis NB (2001) TectoRNA: modular assembly units for the construction of RNA nano-objects. Nucleic Acids Res 29:455–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ishikawa J, Furuta H, Ikawa Y (2013) RNA tectonics (TectoRNA) for RNA nanostructure design and its application in synthetic biology. Wiley Interdiscip Rev RNA 4:651–664

    Article  CAS  PubMed  Google Scholar 

  4. Jaeger L, Chworos A (2006) The architectonics of programmable RNA and DNA nanostructures. Curr Opin Struct Biol 16:531–543

    Article  CAS  PubMed  Google Scholar 

  5. Westhof E, Masquida B, Jaeger L (1996) RNA tectonics: towards RNA design. Fold Des 1:78–88

    Article  Google Scholar 

  6. Bui MN, Johnson MB, Viard M et al (2017) Versatile RNA tetra-U helix linking motif as a toolkit for nucleic acid nanotechnology. Nanomed-Nanotechnol 13(3):1137–1146

    Article  CAS  Google Scholar 

  7. Khisamutdinov EF, Jasinski DL, Guo P (2014) RNA as a boiling-resistant anionic polymer material to build robust structures with defined shape and stoichiometry. ACS Nano 8(5):4771–4781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bindewald E, Afonin KA, Jaeger L, Shapiro BA (2011) Multistrand RNA secondary structure prediction and nanostructure design including pseudoknots. ACS Nano 5(12):9542–9551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Severcan I, Geary C, Verzemnieks E, Chworos A, Jaeger L (2009) Square-shaped RNA particles from different RNA folds. Nano Lett 9(3):1270–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yingling YG, Shapiro BA (2007) Computational design of an RNA hexagonal nanoring and an RNA nanotube. Nano Lett 7(8):2328–2334

    Article  CAS  PubMed  Google Scholar 

  11. Grabow WW, Zakrevsky P, Afonin KA, Chworos A, Shapiro BA, Jaeger L (2011) Self-assembling RNA nanorings based on RNAI/II inverse kissing complexes. Nano Lett 11(2):878–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sajja S, Chandler M, Fedorov D et al (2018) Dynamic behavior of RNA nanoparticles analyzed by AFM on a mica/air interface. Langmuir 34(49):15099–15108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Afonin KA, Bindewald E, Yaghoubian AJ et al (2010) In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat Nanotechnol 5:676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Afonin KA, Grabow WW, Walker FM, Bindewald E, Dobrovolskaia MA, Shapiro BA, Jaeger L (2011) Design and self-assembly of siRNA-functionalized RNA nanoparticles for use in automated nanomedicine. Nat Protoc 6:2022–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Afonin KA, Kasprzak W, Bindewald E et al (2014) Computational and experimental characterization of RNA cubic nanoscaffolds. Methods 67(2):256–265

    Article  CAS  PubMed  Google Scholar 

  16. Afonin KA, Viard M, Kagiampakis I et al (2015) Triggering of RNA interference with RNA–RNA, RNA–DNA, and DNA–RNA nanoparticles. ACS Nano 9(1):251–259

    Article  CAS  PubMed  Google Scholar 

  17. Elonen A, Natarajan AK, Kawamata I et al (2022) Algorithmic design of 3D wireframe RNA polyhedra. ACS Nano 16(10):16608–16616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Severcan I, Geary C, Chworos A, Voss N, Jacovetty E, Jaeger L (2010) A polyhedron made of tRNAs. Nat Chem 2:772–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shu D, Shu Y, Haque F, Abdelmawla S, Guo P (2011) Thermodynamically stable RNA three-way junctions for constructing multifunctional nanoparticles for delivery of therapeutics. Nat Nanotechnol 6:658–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shu D, Li H, Yi S et al (2015) Systemic delivery of anti-MiRNA for suppression of triple negative breast cancer utilizing RNA nanotechnology. ACS Nano 9:9731–9740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee T, Haque F, Shu D et al (2015) RNA nanoparticles as a vector for targeted SiRNA delivery into glioblastoma mouse model. Oncotarget 6:14766–14776

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kim T, Viard M, Afonin KA et al (2020) Characterization of cationic bolaamphiphile vesicles for siRNA delivery into tumors and brain. Mol Ther Nucleic Acids 20:359–372

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chen AK, Behlke MA, Tsourkas A (2007) Avoiding false-positive signals with nuclease-vulnerable molecular beacons in single living cells. Nucleic Acids Res 35:e105

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen AK, Behlke MA, Tsourkas A (2008) Efficient cytosolic delivery of molecular beacon conjugates and flow cytometric analysis of target RNA. Nucleic Acids Res 36:e69

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mhlanga MM, Vargas DY, Fung CW, Kramer FR, Tyagi S (2005) TRNA-linked molecular beacons for imaging MRNAs in the cytoplasm of living cells. Nucleic Acids Res 33:1902–1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rhee WJ, Santangelo PJ, Jo H, Bao G (2008) Target accessibility and signal specificity in live-cell detection of BMP-4 MRNA using molecular beacons. Nucleic Acids Res 36:e30

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kim JK, Choi K, Lee M, Jo M, Kim S (2012) Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer- and MicroRNA-221 molecular beacon-conjugated nanoparticle. Biomaterials 33:207–217

    Article  CAS  PubMed  Google Scholar 

  28. Peng X, Cao Z, Xia J et al (2005) Real-time detection of gene expression in cancer cells using molecular beacon imaging: new strategies for cancer research. Cancer Res 65:1909–1917

    Article  CAS  PubMed  Google Scholar 

  29. Bryson JM, Fichter KM, Chu W, Reineke TM (2009) Polymer beacons for luminescence and magnetic resonance imaging of DNA delivery. Proc Natl Acad Sci U S A 106:16913–16918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qiu L, Wu C, You M et al (2013) Targeted, self-delivered, and photocontrolled molecular beacon for MRNA detection in living cells. J Am Chem Soc 135:12952–12955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu TW, Akens MK, Chen J et al (2011) Imaging of specific activation of photodynamic molecular beacons in breast cancer vertebral metastases. Bioconjug Chem 22:1021–1030

    Article  CAS  PubMed  Google Scholar 

  32. Martinez HM, Maizel JV Jr, Shapiro BA (2008) RNA2D3D: a program for generating, viewing, and comparing 3-dimensional models of RNA. J Biomol Struct Dyn 25:669–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bindewald E, Grunewald C, Boyle B, O'Connor M, Shapiro BA (2008) Computational strategies for the automated design of RNA nanoscale structures from building blocks using nanotiler. J Mol Graph Model 27:299–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jossinet F, Ludwig TE, Westhof E (2010) Assemble: an interactive graphical tool to analyze and build RNA architectures at the 2D and 3D levels. Bioinformatics 26:2057–2059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Busch A, Backofen R (2007) INFO-RNA – a server for fast inverse RNA folding satisfying sequence constraints. Nucleic Acids Res 35:W310–W313

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zadeh JN, Steenberg CD, Bois JS et al (2011) nupack: analysis and design of nucleic acid systems. J Comput Chem 32:170–173

    Article  CAS  PubMed  Google Scholar 

  37. Case DA, Aktulga HM, Belfon K et al (2022) Amber 2022. University of California, San Francisco

    Google Scholar 

  38. Phillips JC, Hardy DJ, Maia JDC et al (2020) Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys 153:044130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brooks BR, Brooks CL III, Mackerell AD Jr et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Abraham MJ, Murtola T, Schulz R et al (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25

    Article  Google Scholar 

  41. Roe DR, Cheatham TE III (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9(7):3084–3095

    Article  CAS  PubMed  Google Scholar 

  42. Humphrey W, Dalke A, Schulten K (1996) VMD – visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  43. Chandler M, Shevchenko O, Vivero-Escoto JL, Striplin CD, Afonin KA (2020) DNA-templated synthesis of fluorescent silver nanoclusters. J Chem Educ 97(7):1992–1996

    Article  CAS  Google Scholar 

  44. Rolband L, Yourston L, Chandler M et al (2021) DNA-templated fluorescent silver nanoclusters inhibit bacterial growth while being non-toxic to mammalian cells. Molecules 26(13):4045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cerretani C, Kanazawa H, Vosch T, Kondo J (2019) Crystal structure of a NIR-emitting DNA-stabilized Ag16 nanocluster. Angew Chem 131:17313–17317

    Article  Google Scholar 

  46. Huard DJE, Demissie A, Kim D (2019) Atomic structure of a fluorescent Ag8 cluster templated by a multistranded DNA scaffold. J Am Chem Soc 141:11465–11470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Javani S, Lorca R, Latorre A et al (2016) Antibacterial activity of DNA-stabilized silver nanoclusters tuned by oligonucleotide sequence. ACS Appl Mater Interfaces 8:10147–10154

    Article  CAS  PubMed  Google Scholar 

  48. Yang L, Yao C, Li F, Dong Y, Zhang Z, Yang D (2018) Synthesis of branched DNA Scaffolded super-nanoclusters with enhanced antibacterial performance. Small 14:1800185

    Article  Google Scholar 

  49. Eun H, Kwon WY, Kalimuthu K et al (2019) Melaminepromoted formation of bright and stable DNA–silver nanoclusters and their antimicrobial properties. J Mater Chem B 7:2512–2517

    Article  CAS  PubMed  Google Scholar 

  50. Kim T, Shapiro BA (2013) The role of salt concentration and magnesium binding in HIV-1 subtype-A and subtype-B kissing loop monomer structures. J Biomol Struct Dyn 31(5):495–510

    Article  CAS  PubMed  Google Scholar 

  51. Ulyanov NB, Bauer WR, James TJ (2002) High-resolution NMR structure of an AT-rich DNA sequence. J Biomol NMR 22:265–280

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taejin Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Perdomo, V.A., Kim, T. (2023). Molecular Dynamics Simulations of RNA Motifs to Guide the Architectural Parameters and Design Principles of RNA Nanostructures. In: Afonin, K.A. (eds) RNA Nanostructures. Methods in Molecular Biology, vol 2709. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3417-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3417-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3416-5

  • Online ISBN: 978-1-0716-3417-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics