Skip to main content

Section Immunostaining for Protein Expression and Cell Proliferation Studies of Regenerating Fins

  • Protocol
  • First Online:
Zebrafish

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2707))

Abstract

Adult zebrafish fins fully regenerate after resection, providing a highly accessible and remarkable vertebrate model of organ regeneration. Fin injury triggers wound epidermis formation and the dedifferentiation of injury-adjacent mature cells to establish an organized blastema of progenitor cells. Balanced cell proliferation and redifferentiation along with cell movements then progressively reestablish patterned tissues and restore the fin to its original size and shape. A mechanistic understanding of these coordinated cell behaviors and transitions requires direct knowledge of proteins in their physiological context, including expression, subcellular localization, and activity. Antibody-based staining of sectioned fins facilitates such high-resolution analyses of specific, native proteins. Therefore, such methods are mainstays of comprehensive, hypothesis-driven fin regeneration studies. However, section immunostaining requires labor-intensive, empirical optimization. Here, we present detailed, multistep procedures for antibody staining and co-detecting proliferating cells using paraffin and frozen fin sections. We include suggestions to avoid common pitfalls and to streamline the development of optimized, validated protocols for new and challenging antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sehring I, Weidinger G (2021) Zebrafish fin: complex molecular interactions and cellular mechanisms guiding regeneration. Cold Spring Harb Perspect Biol:a040758. https://doi.org/10.1101/cshperspect.a040758

  2. Smith A, Zhang J, Guay D, Quint E, Johnson A, Akimenko MA (2008) Gene expression analysis on sections of zebrafish regenerating fins reveals limitations in the whole-mount in situ hybridization method. Dev Dyn 237:417–425. https://doi.org/10.1002/dvdy.21417

    Article  CAS  PubMed  Google Scholar 

  3. Thisse C, Thisse B (2008) High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3:59–69. https://doi.org/10.1038/nprot.2007.514

    Article  CAS  PubMed  Google Scholar 

  4. Fox CH, Johnson FB, Whiting J, Roller PP (1985) Formaldehyde fixation. J Histochem Cytochem 33:845–853. https://doi.org/10.1177/33.8.3894502

    Article  CAS  PubMed  Google Scholar 

  5. Howat WJ, Wilson BA (2014) Tissue fixation and the effect of molecular fixatives on downstream staining procedures. Methods 70:12–19. https://doi.org/10.1016/j.ymeth.2014.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Krenacs L, Krenacs T, Raffeld M (1999) Antigen retrieval for immunohistochemical reactions in routinely processed paraffin sections. Methods Mol Biol 115:85–93. https://doi.org/10.1385/1-59259-213-9:85

    Article  CAS  PubMed  Google Scholar 

  7. Shi S-R, Shi Y, Taylor CR (2011) Antigen retrieval immunohistochemistry: review and future prospects in research and diagnosis over two decades. J Histochem Cytochem 59:13–32. https://doi.org/10.1369/jhc.2010.957191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Namimatsu S, Ghazizadeh M, Sugisaki Y (2005) Reversing the effects of formalin fixation with citraconic anhydride and heat: a universal antigen retrieval method. J Histochem Cytochem 53:3–11. https://doi.org/10.1177/002215540505300102

    Article  CAS  PubMed  Google Scholar 

  9. Stewart S, Stankunas K (2012) Limited dedifferentiation provides replacement tissue during zebrafish fin regeneration. Dev Biol 365:339–349. https://doi.org/10.1016/j.ydbio.2012.02.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stewart S, Le Bleu HK, Yette GA, Henner AL, Robbins AE, Braunstein JA, Stankunas K (2021) Longfin causes cis-ectopic expression of the kcnh2a ether-a-go-go K+ channel to autonomously prolong fin outgrowth. Development 148. https://doi.org/10.1242/dev.199384

  11. Stewart S, Gomez AW, Armstrong BE, Henner A, Stankunas K (2014) Sequential and opposing activities of Wnt and BMP coordinate zebrafish bone regeneration. Cell Rep 6:482–498. https://doi.org/10.1016/j.celrep.2014.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Armstrong BE, Henner A, Stewart S, Stankunas K (2017) Shh promotes direct interactions between epidermal cells and osteoblast progenitors to shape regenerated zebrafish bone. Development 144:1165–1176. https://doi.org/10.1242/dev.143792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Braunstein JA, Robbins AE, Stewart S, Stankunas K (2021) Basal epidermis collective migration and local sonic hedgehog signaling promote skeletal branching morphogenesis in zebrafish fins. Dev Biol 477:177–190. https://doi.org/10.1016/j.ydbio.2021.04.010

    Article  CAS  PubMed  Google Scholar 

  14. Galand P, Degraef C (1989) Cyclin/PCNA immunostaining as an alternative to tritiated thymidine pulse labelling for marking S phase cells in paraffin sections from animal and human tissues. Cell Tissue Kinet 22:383–392. https://doi.org/10.1111/j.1365-2184.1989.tb00223.x

    Article  CAS  PubMed  Google Scholar 

  15. Yu CC, Woods AL, Levison DA (1992) The assessment of cellular proliferation by immunohistochemistry: a review of currently available methods and their applications. Histochem J 24:121–131. https://doi.org/10.1007/BF01047461

    Article  CAS  PubMed  Google Scholar 

  16. Hall PA, Levison DA, Woods AL, Yu CC, Kellock DB, Watkins JA, Barnes DM, Gillett CE, Camplejohn R, Dover R (1990) Proliferating cell nuclear antigen (PCNA) immunolocalization in paraffin sections: an index of cell proliferation with evidence of deregulated expression in some neoplasms. J Pathol 162:285–294. https://doi.org/10.1002/path.1711620403

    Article  CAS  PubMed  Google Scholar 

  17. Hall PA, McKee PH, Menage HD, Dover R, Lane DP (1993) High levels of p53 protein in UV-irradiated normal human skin. Oncogene 8:203–207

    CAS  PubMed  Google Scholar 

  18. Hendzel MJ, Wei Y, Mancini MA, Van Hooser A, Ranalli T, Brinkley BR, Bazett-Jones DP, Allis CD (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106:348–360. https://doi.org/10.1007/s004120050256

    Article  CAS  PubMed  Google Scholar 

  19. Hsu JY, Sun ZW, Li X, Reuben M, Tatchell K, Bishop DK, Grushcow JM, Brame CJ, Caldwell JA, Hunt DF, Lin R, Smith MM, Allis CD (2000) Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102:279–291. https://doi.org/10.1016/s0092-8674(00)00034-9

    Article  CAS  PubMed  Google Scholar 

  20. Wei Y, Mizzen CA, Cook RG, Gorovsky MA, Allis CD (1998) Phosphorylation of histone H3 at serine 10 is correlated with chromosome condensation during mitosis and meiosis in Tetrahymena. Proc Natl Acad Sci U S A 95:7480–7484. https://doi.org/10.1073/pnas.95.13.7480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gratzner HG, Pollack A, Ingram DJ, Leif RC (1976) Deoxyribonucleic acid replication in single cells and chromosomes by immunologic techniques. J Histochem Cytochem 24:34–39. https://doi.org/10.1177/24.1.815428

    Article  CAS  PubMed  Google Scholar 

  22. Gratzner HG (1982) Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: a new reagent for detection of DNA replication. Science 218:474–475. https://doi.org/10.1126/science.7123245

    Article  CAS  PubMed  Google Scholar 

  23. Wynford-Thomas D, Williams ED (1986) Use of bromodeoxyuridine for cell kinetic studies in intact animals. Cell Tissue Kinet 19:179–182. https://doi.org/10.1111/j.1365-2184.1986.tb00728.x

    Article  CAS  PubMed  Google Scholar 

  24. Rakic P (2002) Neurogenesis in adult primate neocortex: an evaluation of the evidence. Nat Rev Neurosci 3:65–71. https://doi.org/10.1038/nrn700

    Article  CAS  PubMed  Google Scholar 

  25. Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064. https://doi.org/10.1021/jo011148j

    Article  CAS  PubMed  Google Scholar 

  26. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed Engl 41:2596–2599

    Article  CAS  PubMed  Google Scholar 

  27. Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A 105:2415–2420. https://doi.org/10.1073/pnas.0712168105

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kinkel MD, Eames SC, Philipson LH, Prince VE (2010) Intraperitoneal injection into adult zebrafish. J Vis Exp 2126. https://doi.org/10.3791/2126

  29. Samaee S-M, Seyedin S, Varga ZM (2017) An affordable intraperitoneal injection setup for juvenile and adult zebrafish. Zebrafish 14:77–79. https://doi.org/10.1089/zeb.2016.1322

    Article  PubMed  PubMed Central  Google Scholar 

  30. Buchwalow I, Samoilova V, Boecker W, Tiemann M (2011) Non-specific binding of antibodies in immunohistochemistry: fallacies and facts. Sci Rep 1:28. https://doi.org/10.1038/srep00028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stewart S, Yette GA, Le Bleu HK, Henner AL, Braunstein JA, Chehab JW, Harms MJ, Stankunas K (2019) Skeletal geometry and niche transitions restore organ size and shape during zebrafish fin regeneration. bioRxiv https://doi.org/10.1101/606970

Download references

Acknowledgments

We thank Astra Henner for technical expertise and edits. The National Institute of General Medical Sciences provided research funding (1R01GM127761).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Scott Stewart or Kryn Stankunas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stewart, S., Stankunas, K. (2024). Section Immunostaining for Protein Expression and Cell Proliferation Studies of Regenerating Fins. In: Amatruda, J.F., Houart, C., Kawakami, K., Poss, K.D. (eds) Zebrafish. Methods in Molecular Biology, vol 2707. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3401-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3401-1_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3400-4

  • Online ISBN: 978-1-0716-3401-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics