Skip to main content

Engineering SH2 Domains with Tailored Specificities and Affinities

  • Protocol
  • First Online:
SH2 Domains

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2705))

Abstract

The Src Homology 2 (SH2) domain is an emerging biotechnology with applications in basic science, drug discovery, and even diagnostics. The SH2 domains rapid uptake into different areas of research is a direct result of the wealth of information generated on its biochemical, biological, and biophysical role in mammalian cell biology. Functionally, the SH2 domain binds and recognizes specific phosphotyrosine (pTyr) residues in the cell to mediate protein–protein interactions (PPIs) that govern signal transduction networks. These signal transduction networks are responsible for relaying growth and stress state signals to the cell’s nucleus, ultimately effecting a change in cell biology. Protein engineers have been able to increase the affinity of SH2 domains for pTyr while also tailoring the domains’ specificity to unique amino acid sequences flanking the pTyr residue. In this way, it has been possible to develop unique SH2 variants for use in affinity-purification coupled to mass spectrometry (AP-MS) experiments, microscopy, or even synthetic biology. This chapter outlines methods to tailor the affinity and specificity of virtually any human SH2 domain using a combination of rational engineering and phage-display approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PTM:

Posttranslational modification

pTyr:

Phosphotyrosine

SH2:

Src-Homology 2

References

  1. Waksman G, Kominos D, Robertson SC et al (1992) Crystal structure of the phosphotyrosine recognition domain of SH2 of v-src complexed with tyrosine-phosphorylated peptides. Nature 358:646–653

    Article  CAS  PubMed  Google Scholar 

  2. Kaneko T, Huang H, Zhao B et al (2010) Loops govern SH2 domain specificity by controlling access to binding pockets. Sci Signal 3:ra34. https://doi.org/10.1126/scisignal.2000796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hause RJ, Leung KK, Barkinge JL et al (2012) Comprehensive binary interaction mapping of SH2 domains via fluorescence polarization reveals novel functional diversification of ErbB receptors. PLoS One 7:e44471. https://doi.org/10.1371/journal.pone.0044471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Haslam NJ, Shields DC (2012) Peptide-binding domains: are limp handshakes safest? Sci Signal 5:pe40. https://doi.org/10.1126/scisignal.2003372

    Article  CAS  PubMed  Google Scholar 

  5. Thibault P, Michnick SW, Kanshin E et al (2015) A cell-signaling network temporally resolves specific versus promiscuous phosphorylation. Cell Rep 10:1202–1214. https://doi.org/10.1016/j.celrep.2015.01.052

    Article  CAS  PubMed  Google Scholar 

  6. Liu BA, Engelmann BW, Nash PD (2012) The language of SH2 domain interactions defines phosphotyrosine-mediated signal transduction. FEBS Lett 586:2597–2605. https://doi.org/10.1016/j.febslet.2012.04.054

    Article  CAS  PubMed  Google Scholar 

  7. Lim WA, Pawson T (2010) Phosphotyrosine signaling: evolving a new cellular communication system. Cell 142:661–667. https://doi.org/10.1016/j.cell.2010.08.023.Phosphotyrosine

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li L, Tibiche C, Fu C et al (2012) The human phosphotyrosine signaling network: evolution and hotspots of hijacking in cancer. Genome Res 22:1222–1230. https://doi.org/10.1101/gr.128819.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Doll S, Gnad F, Mann M (2019) The case for proteomics and phospho-proteomics in personalized cancer medicine. Proteomics Clin Appl 13:1800113. https://doi.org/10.1002/prca.201800113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kaneko T, Huang H, Cao X et al (2012) Superbinder SH2 domains act as antagonists of cell signaling. Sci Signal 5:ra68. https://doi.org/10.1126/scisignal.2003021

    Article  CAS  PubMed  Google Scholar 

  11. Martyn GD, Veggiani G, Kusebauch U et al (2022) Engineered SH2 domains for targeted phosphoproteomics. ACS Chem Biol 17:1472–1484. https://doi.org/10.1021/acschembio.2c00051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schneider M, Lane L, Boutet E et al (2009) The UniprotKB/Swiss-Prot knowledgebase and its plant proteome annotation program. J Proteome 72:567–573. https://doi.org/10.1016/j.jprot.2008.11.010.The

    Article  CAS  Google Scholar 

  13. Papadopoulos JS, Agarwala R (2007) COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23:1073–1079. https://doi.org/10.1093/bioinformatics/btm076

    Article  CAS  PubMed  Google Scholar 

  14. Waterhouse AM, Procter JB, Martin DMA et al (2009) Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191. https://doi.org/10.1093/bioinformatics/btp033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burley SK, Berman HM, Bhikadiya C et al (2019) RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res 47:D464–D474. https://doi.org/10.1093/nar/gky1004

    Article  CAS  PubMed  Google Scholar 

  16. Schrodinger L, DeLano W (2020) PyMol. Retrieved from http://www.pymol.org/pymol

  17. Liu BA, Ogiue-Ikeda M, Machida K (2017) Expression and production of SH2 domain proteins. In: SH2 domains: methods and protocols. Springer Nature, pp 117–162

    Chapter  Google Scholar 

  18. Tinti M, Kiemer L, Costa S et al (2013) The SH2 domain interaction landscape. Cell Rep 3:1293–1305. https://doi.org/10.1016/j.celrep.2013.03.001.The

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jones RB, Gordus A, Krall JA, MacBeath G (2006) A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439:168–174. https://doi.org/10.1038/nature04177

    Article  CAS  PubMed  Google Scholar 

  20. Huang H, Li L, Wu C et al (2007) Defining the specificity space of the human Src homology 2 domain. Mol Cell Proteomics 7:768–784. https://doi.org/10.1074/mcp.M700312-MCP200

    Article  CAS  PubMed  Google Scholar 

  21. Veggiani G, Huang H, Yates BP et al (2019) Engineered SH2 domains with tailored specificities and enhanced affinities for phosphoproteome analysis. Protein Sci 28:403–413. https://doi.org/10.1002/pro.3551

    Article  CAS  PubMed  Google Scholar 

  22. Liu H, Huang H, Voss C et al (2019) Surface loops in a single SH2 domain are capable of encoding the spectrum of specificity of the SH2 family. Mol Cell Proteomics 18:372–382. https://doi.org/10.1074/mcp.RA118.001123

    Article  CAS  PubMed  Google Scholar 

  23. Kunkel TA (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A 82:488–492. https://doi.org/10.1073/pnas.82.2.488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tonikian R, Zhang Y, Boone C, Sidhu SS (2007) Identifying specificity profiles for peptide recognition modules from phage-displayed peptide libraries. Nat Protoc 2:1368–1386. https://doi.org/10.1038/nprot.2007.151

    Article  CAS  PubMed  Google Scholar 

  25. Huang H, Kaneko T, Sidhu SS, Li SSC (2017) Creation of phosphotyrosine superbinders by directed evolution of an SH2 domain. In: Machida K, Liu BA (eds) SH2 domains methods and protocols, 1555th edn. Springer Nature, New York, pp 225–254

    Chapter  Google Scholar 

  26. Hu J, Hubbard SR (2005) Structural characterization of a novel Cbl phosphotyrosine recognition motif in the APS family of adapter proteins. J Biol Chem 280:18943–18949. https://doi.org/10.1074/jbc.M414157200

    Article  CAS  PubMed  Google Scholar 

  27. Ng C, Jackson RA, Buschdorf JP et al (2008) Structural basis for a novel intrapeptidyl H-bond and reverse binding of c-Cbl-TKB domain substrates. EMBO J 27:804–816. https://doi.org/10.1038/emboj.2008.18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stein A, Aloy P (2008) Contextual specificity in peptide-mediated protein interactions. PLoS One 3:e2524. https://doi.org/10.1371/journal.pone.0002524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wagner MJ, Stacey MM, Liu BA, Pawson T (2013) Molecular mechanisms of SH2- and PTB-domain-containing proteins in receptor tyrosine kinase signaling. Cold Spring Harb Perspect Biol 5. https://doi.org/10.1101/cshperspect.a008987

  30. Nuttall SD, Walsh RB (2008) Display scaffolds: protein engineering for novel therapeutics. Curr Opin Pharmacol 8:609–615. https://doi.org/10.1016/j.coph.2008.06.007

    Article  CAS  PubMed  Google Scholar 

  31. Bostrom J, Lee CV, Haber L, Fuh G (2009) Improving antibody binding affinity and specificity for therapeutic development. In: Therapeutic antibodies: methods and protocols. Springer, pp 353–376

    Chapter  Google Scholar 

  32. Hattori T, Koide S (2019) Next-generation antibodies for post-translational modifications. Curr Opin Struct Biol 51:141–148. https://doi.org/10.1016/j.sbi.2018.04.006.Next-generation

    Article  Google Scholar 

  33. Machida K, Liu BA (2017) SH2 domains: methods and protocols. In: Methods in molecular biology, 1555th edn. Springer Nature, New York, pp 1–546

    Google Scholar 

  34. Bian Y, Li L, Dong M et al (2016) Ultra-deep tyrosine phosphoproteomics enabled by a phosphotyrosine superbinder. Nat Chem Biol 12:959–966. https://doi.org/10.1038/nchembio.2178

    Article  CAS  PubMed  Google Scholar 

  35. Tong J, Cao B, Martyn GD et al (2017) Protein-phosphotyrosine proteome profiling by superbinder-SH2 domain affinity purification mass spectrometry, sSH2-AP-MS. Proteomics 17:1600360. https://doi.org/10.1002/pmic.201600360

    Article  CAS  Google Scholar 

  36. Freeman J, Kriston-vizi J, Seed B, Ketteler R (2012) A high-content imaging workflow to study Grb2 signaling complexes by expression cloning. J Vis Exp 68:e4382. https://doi.org/10.3791/4382

    Article  CAS  Google Scholar 

  37. Noguchi T, Ishiba H, Honda K et al (2017) Synthesis of Grb2 SH2 domain proteins for mirror-image screening systems. Bioconjug Chem 28:609–619. https://doi.org/10.1021/acs.bioconjchem.6b00692

    Article  CAS  PubMed  Google Scholar 

  38. Sun J, Lei L, Tsai CM et al (2017) Engineered proteins with sensing and activating modules for automated reprogramming of cellular functions. Nat Commun 8:477. https://doi.org/10.1038/s41467-017-00569-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Findlay GM, Smith MJ, Lanner F et al (2013) Interaction domains of Sos1/Grb2 are finely tuned for cooperative control of embryonic stem cell fate. Cell 152:1008–1020. https://doi.org/10.1016/j.cell.2013.01.056

    Article  CAS  PubMed  Google Scholar 

  40. Barnea G, Strapps W, Herrada G et al (2008) The genetic design of signaling cascades to record receptor activation. PNAS 105:64–69

    Article  CAS  PubMed  Google Scholar 

  41. Farrell MV, Nunez AC, Yang Z et al (2022) Protein-PAINT: Superresolution microscopy with signaling proteins. Sci Signal 15:eabg9782

    Article  CAS  PubMed  Google Scholar 

  42. The Uniprot Consortium, Bateman A (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515. https://doi.org/10.1093/nar/gky1049

    Article  CAS  Google Scholar 

  43. Silva D, Santos G, Barroca M, Collins T (2017) Inverse PCR for point mutation introduction. In: Methods in molecular biology. Springer, pp 87–100

    Google Scholar 

  44. Fujimoto K, Fukuda T, Marumoto R (1988) Expression and secretion of human epidermal growth factor by Escherichia coli using enterotoxin signal sequences. J Biotechnol 8:77–86

    Article  CAS  Google Scholar 

  45. Thie H, Schirrmann T, Paschke M et al (2008) SRP and Sec pathway leader peptides for antibody phage display and antibody fragment production in E. coli. New Biotechnol 25:49–54. https://doi.org/10.1016/j.nbt.2008.01.001

    Article  CAS  Google Scholar 

  46. Lawrie J, Niu W, Guo J (2019) Engineering of a sulfotyrosine-recognizing small protein scaffold for the study of protein tyrosine O-sulfation. In: Methods in enzymology. Elsevier, pp 67–89

    Google Scholar 

  47. Warner HR, Duncan BK, Garrett C, Neuhard J (1981) Synthesis and metabolism of uracil-containing deoxyribonucleic acid in Escherichia coli. J Bacteriol 145:687–695. https://doi.org/10.1128/jb.145.2.687-695.1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sidhu SS, Lowman HB, Cunningham BC, Wells JA (2000) Phage display for selection of novel binding peptides. Methods Enzymol 328:333–363

    Article  CAS  PubMed  Google Scholar 

  49. Ju T, Niu W, Guo J (2016) Evolution of Src homology 2 (SH2) domain to recognize sulfotyrosine. ACS Chem Biol 11:2551–2557. https://doi.org/10.1021/acschembio.6b00555

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachdev S. Sidhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Martyn, G.D., Veggiani, G., Sidhu, S.S. (2023). Engineering SH2 Domains with Tailored Specificities and Affinities. In: Carlomagno, T., Köhn, M. (eds) SH2 Domains. Methods in Molecular Biology, vol 2705. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3393-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3393-9_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3392-2

  • Online ISBN: 978-1-0716-3393-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics