Skip to main content

The Plant DNA C-Values Database: A One-Stop Shop for Plant Genome Size Data

  • Protocol
  • First Online:
Plant Genomic and Cytogenetic Databases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2703))

Abstract

Genome size is a plant character with far-reaching implications, ranging from impacts on the financial and computing feasibility of sequencing and assembling genomes all the way to influencing the very ecology and evolution of species. The increasing recognition of the role of genome size in plant science has led to a rising demand for comprehensive and easily accessible sources of genome size data. The Plant DNA C-values database has established itself as a trusted and widely used central hub for users needing to access available plant genome size data, complemented with related cytogenetic (ploidy level) and karyological (chromosome number) information where available. Since its inception in 2001, the database has undergone six major updates to incorporate newly available genome size information, leading to the most recent release (Release 7.1), which comprises data for 12,273 species across all the major land plant and some algal lineages. Here we describe how to use the database efficiently, making use of its different query and filtering settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greilhuber J, Leitch IJ (2013) Genome size and the phenotype. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2. Springer, Vienna, pp 323–344

    Chapter  Google Scholar 

  2. Pellicer J, Hidalgo O, Dodsworth S, Leitch IJ (2018) Genome size diversity and its impact on the evolution of land plants. Genes 9(2):88. https://doi.org/10.3390/genes9020088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang D, Zheng Z, Li Y et al (2021) Which factors contribute most to genome size variation within angiosperms? Ecol Evol 11(6):2660–2668. https://doi.org/10.1002/ece3.7222

    Article  PubMed  PubMed Central  Google Scholar 

  4. Greilhuber J, Doležel J, Lysak MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘Genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann Bot 95:255–260. https://doi.org/10.1093/aob/mci019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pellicer J, Leitch IJ (2020) The plant DNA C-values database (release 7.1): an updated online repository of plant genome size data for comparative studies. New Phytol 226:301–305. https://doi.org/10.1111/nph.16261

    Article  PubMed  Google Scholar 

  6. Pellicer J, Fay MF, Leitch IJ (2010) The largest eukaryotic genome of them all? Bot J Linn Soc 164:10–15. https://doi.org/10.1111/j.1095-8339.2010.01072.x

    Article  Google Scholar 

  7. Hidalgo O, Pellicer J, Christenhusz M et al (2017) Is there an upper limit to genome size? Trends Plant Sci 22(7):567–573. https://doi.org/10.1016/j.tplants.2017.04.005

    Article  CAS  PubMed  Google Scholar 

  8. Faizullah L, Morton JA, Hersch-Green EI et al (2021) Exploring environmental selection on genome size in angiosperms. Trends Plant Sci 26(10):1039–1049. https://doi.org/10.1016/j.tplants.2021.06.001

    Article  CAS  PubMed  Google Scholar 

  9. Simonin KA, Roddy AB (2018) Genome downsizing, physiological novelty, and the global dominance of flowering plants. PLoS Biol 16:e2003706. https://doi.org/10.1371/journal.pbio.2003706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roddy AB, Théroux-Rancourt G, Abbo T et al (2020) The scaling of genome size and cell size limits maximum rates of photosynthesis with implications for ecological strategies. Int J Plant Sci 181(1):75–87. https://doi.org/10.1086/706186

    Article  Google Scholar 

  11. Théroux-Rancourt G, Roddy AB, Earles JM et al (2021) Maximum CO2 diffusion inside leaves is limited by the scaling of cell size and genome size. Proc Biol Sci 288:20203145. https://doi.org/10.1098/rspb.2020.3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dodsworth S, Leitch AR, Leitch IJ (2015) Genome size diversity in angiosperms and its influence on gene space. Curr Opin Genet Dev 35:73–78. https://doi.org/10.1016/j.gde.2015.10.006

    Article  CAS  PubMed  Google Scholar 

  13. Novák P, Guignard MS, Neumann P et al (2020) Repeat-sequence turnover shifts fundamentally in species with large genomes. Nat Plants 6:1325–1329. https://doi.org/10.1038/s41477-020-00785-x

    Article  CAS  PubMed  Google Scholar 

  14. Plačková K, Bureš P, Zedek F (2021) Centromere size scales with genome size across Eukaryotes. Sci Rep 11:19811. https://doi.org/10.1038/s41598-021-99386-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Šímová I, Herben T (2012) Geometrical constraints in the scaling relationships between genome size, cell size and cell cycle length in herbaceous plants. Proc Royal Soc B 279:867–875. https://doi.org/10.1098/rspb.2011.1284

    Article  Google Scholar 

  16. Bennett MD (1971) The duration of meiosis. Proc Royal Soc B 178(1052):277–299. https://doi.org/10.1098/rspb.1971.0066

    Article  CAS  Google Scholar 

  17. Suda J, Meyerson LA, Leitch IJ, Pyšek P (2015) The hidden side of plant invasions: the role of genome size. New Phytol 205:994–1007. https://doi.org/10.1111/nph.13107

    Article  PubMed  Google Scholar 

  18. Guignard MS, Nichols RA, Knell RJ (2016) Genome size and ploidy influence angiosperm species’ biomass under nitrogen and phosphorus limitation. New Phytol 210:1195–1206. https://doi.org/10.1111/nph.13881

    Article  PubMed  PubMed Central  Google Scholar 

  19. Guignard MS, Crawley MJ, Kovalenko D et al (2019) Interactions between plant genome size, nutrients and herbivory by rabbits, molluscs and insects on a temperate grassland. Proc Royal Soc B 286:20182619. https://doi.org/10.1098/rspb.2018.2619

    Article  CAS  Google Scholar 

  20. Exposito-Alonso M, Drost H-G, Burbano HA, Weigel D (2020) The Earth BioGenome project: opportunities and challenges for plant genomics and conservation. Plant J 102:222–229. https://doi.org/10.1111/tpj.14631

    Article  CAS  PubMed  Google Scholar 

  21. The Darwin Tree of Life Project Consortium (2022) Sequence locally, think globally: The Darwin Tree of Life Project. PNAS 119:e2115642118. https://doi.org/10.1073/pnas.2115642118

    Article  CAS  PubMed Central  Google Scholar 

  22. Li FW, Harkess A (2018) A guide to sequence your favorite plant genomes. Appl Plant Sci 6:e1030. https://doi.org/10.1002/aps3.1030

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bennett MD, Leitch IJ (2001) Plant DNA C-values database (release 1.0). https://cvalues.science.kew.org/

  24. Swift H (1950) The constancy of desoxyribose nucleic acid in plant nuclei. PNAS 36:643–654. https://doi.org/10.1073/pnas.36.11.643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ogur M, Erickson RO, Rosen GU et al (1951) Nucleic acids in relation to cell division in Lilium longiflorum. Exp Cell Res 2:73–89. https://doi.org/10.1016/0014-4827(51)90007-9

    Article  CAS  Google Scholar 

  26. Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2(9):2233–2244. https://doi.org/10.1038/nprot.2007.310

    Article  CAS  PubMed  Google Scholar 

  27. Pellicer J, Powell RF, Leitch IJ (2021) The application of flow cytometry for estimating genome size, ploidy level endopolyploidy, and reproductive modes in plants. In: Besse P (ed) Molecular plant taxonomy, Methods in molecular biology. Humana, New York

    Google Scholar 

  28. Bennett MD, Leitch IJ (2012) Plant DNA C-values database (release 6.0, December 2012). http://data.kew.org/cvalues

  29. Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20. https://doi.org/10.1111/boj.12385

    Article  Google Scholar 

  30. Gregory TR (2022) Animal Genome Size Database. http://www.genomesize.com

  31. Kullman B, Tamm H, Kullman K (2005) Fungal genome size database. http://www.zbi.ee/fungal-genomesize/

  32. Fernandez P, Gálvez F, Garcia S et al (2018) Genome size in Asteraceae database, Release 30, July 2018. https://asteraceaegenomesize.com/index.php

  33. Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51:127–128. https://doi.org/10.1002/cyto.a.10013

    Article  PubMed  Google Scholar 

  34. Leitch IJ, Beaulieu JM, Cheung K et al (2007) Punctuated genome size evolution in Liliaceae. J Evol Biol 20:2296–2308. https://doi.org/10.1111/j.1420-9101.2007.01416.x

    Article  CAS  PubMed  Google Scholar 

  35. Pryer KM, Schuettpelz E, Wolf PG et al (2004) Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. Am J Bot 91(10):1582–1598. https://doi.org/10.3732/ajb.91.10.1582

    Article  CAS  PubMed  Google Scholar 

  36. Christenhusz MJM, Reveal JL, Farjon A et al (2011) A new classification and linear sequence of extant gymnosperms. Phytotaxa 19:55–70. https://doi.org/10.11646/PHYTOTAXA.19.1.3

    Article  Google Scholar 

  37. Christenhusz MJM, Zhang X-C, Schneider H (2011) A linear sequence of extant families and genera of lycophytes and ferns. Phytotaxa 19:7–54. https://doi.org/10.11646/phytotaxa.19.1.2

    Article  Google Scholar 

Download references

Acknowledgments

Marie C Henniges is funded by the Natural Environment Research Council, grant no. NE/L002485/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilia J. Leitch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Henniges, M.C., Johnston, E., Pellicer, J., Hidalgo, O., Bennett, M.D., Leitch, I.J. (2023). The Plant DNA C-Values Database: A One-Stop Shop for Plant Genome Size Data. In: Garcia, S., Nualart, N. (eds) Plant Genomic and Cytogenetic Databases. Methods in Molecular Biology, vol 2703. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3389-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3389-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3388-5

  • Online ISBN: 978-1-0716-3389-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics