Skip to main content

CicerSpTEdb2.0: An Upgrade of Cicer Species Transposable Elements Database

  • Protocol
  • First Online:
Plant Genomic and Cytogenetic Databases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2703))

Abstract

To meet the critical demand of LTR-RTs data-driven research, we updated the CicerSpTEdb database to version 2.0, which includes more accurate intact LTR-RT elements with annotation of internal domains. We also added the ability to BLAST against TEs of Cicer species. As a result, 3701 intact LTR-RTs were detected in the studied genomes, including 2840 Copia and 861 Gypsy elements. Of the 3701 intact LTR-RTs, 588 were in C. arietinum, including 475 Copia and 113 Gypsy. While 1373 were detected in C. reticulatum, including 1041 Copia and 332 Gypsy. Furthermore, 1740 were found in C. echinospermum, including 1324 Copia and 416 Gypsy. Based on LTR-RT clades, the analysis classified the 3701 identified intact LTR-RTs in the studied genomes as Ale (850), SIRE (740), unknown (455), Ikeros (323), Reina (290), Tork (290), Ivana (282), Tekay (197), Athila (128), TAR (99), CRM (31), and Ogre (16) elements. The newly updated CicerSpTEdb2.0 will be a valuable resource for TEs of Cicer species and their comparative genomics.

Database URL: http://cicersptedb.easyomics.org/index.php

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Finnegan DJ (1985) Transposable elements in eukaryotes. Int Rev Cytol 93:281–326

    Article  CAS  PubMed  Google Scholar 

  2. Wicker T, Sabot F, Hua-Van A et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982. https://doi.org/10.1038/nrg2165

    Article  CAS  PubMed  Google Scholar 

  3. Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269. https://doi.org/10.1023/A:1006344508454

    Article  CAS  PubMed  Google Scholar 

  4. Wang W, Zheng H, Fan C et al (2006) High rate of chimeric gene origination by retroposition in plant genomes. Plant Cell 18:1791–1802. https://doi.org/10.1105/tpc.106.041905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lisch D (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60:43–66. https://doi.org/10.1146/annurev.arplant.59.032607.092744

    Article  CAS  PubMed  Google Scholar 

  6. Paszkowski J (2015) Controlled activation of retrotransposition for plant breeding. Curr Opin Biotechnol 32:200–206. https://doi.org/10.1016/j.copbio.2015.01.003

    Article  CAS  PubMed  Google Scholar 

  7. Rey O, Danchin E, Mirouze M et al (2016) Adaptation to global change: a transposable element–epigenetics perspective. Trends Ecol Evol 31:514–526. https://doi.org/10.1016/j.tree.2016.03.013

    Article  PubMed  Google Scholar 

  8. Thieme M, Lanciano S, Balzergue S et al (2017) Inhibition of RNA polymerase II allows controlled mobilisation of retrotransposons for plant breeding. Genome Biol 18:134. https://doi.org/10.1186/s13059-017-1265-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thieme M, Bucher E (2018) Transposable elements as tool for crop improvement. Adv Bot Res 88:165–202. https://doi.org/10.1016/bs.abr.2018.09.001

    Article  CAS  Google Scholar 

  10. Jukanti AK, Gaur PM, Gowda C, Chibbar RN (2012) Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. Br J Nutr 108:S11–S26. https://doi.org/10.1017/S0007114512000797

    Article  CAS  PubMed  Google Scholar 

  11. Varshney RK, Song C, Saxena RK et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246. https://doi.org/10.1038/nbt.2491

    Article  CAS  PubMed  Google Scholar 

  12. Toker C, Berger J, Eker T et al (2021) Cicer turcicum: a new Cicer species and its potential to improve chickpea. Front Plant Sci 12:587. https://doi.org/10.3389/fpls.2021.662891

    Article  Google Scholar 

  13. Parween S, Nawaz K, Roy R et al (2015) An advanced draft genome assembly of a desi type chickpea (Cicer arietinum L.). Sci Rep 5:12806. https://doi.org/10.1038/srep12806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jain M, Misra G, Patel RK et al (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74:715–729. https://doi.org/10.1111/tpj.12173

    Article  CAS  PubMed  Google Scholar 

  15. Gupta S, Nawaz K, Parween S et al (2017) Draft genome sequence of Cicer reticulatum L., the wild progenitor of chickpea provides a resource for agronomic trait improvement. DNA Res 24:1–10. https://doi.org/10.1093/dnares/dsw042

    Article  CAS  PubMed  Google Scholar 

  16. Satheesh V, Fan W, Chu J et al (2021) Recent advancement of NGS technologies to detect active transposable elements in plants. Genes Genom 43:289–294. https://doi.org/10.1007/s13258-021-01040-z

    Article  CAS  Google Scholar 

  17. Jain M, Chevala VVSN, Garg R (2014) Genome-wide discovery and differential regulation of conserved and novel microRNAs in chickpea via deep sequencing. J Exp Bot 65:5945–5958. https://doi.org/10.1093/jxb/eru333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gayali S, Acharya S, Lande NV et al (2016) CicerTransDB 1.0: a resource for expression and functional study of chickpea transcription factors. BMC Plant Biol 16:169. https://doi.org/10.1186/s12870-016-0860-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Singh U, Khemka N, Rajkumar MS et al (2017) PLncPRO for prediction of long non-coding RNAs (lncRNAs) in plants and its application for discovery of abiotic stress-responsive lncRNAs in rice and chickpea. Nucleic Acids Res 45:e183–e183. https://doi.org/10.1093/nar/gkx866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mokhtar MM, Alsamman AM, Abd-Elhalim HM, El Allali A (2021) CicerSpTEdb: a web-based database for high-resolution genome-wide identification of transposable elements in Cicer species. PLoS One 16:e0259540. https://doi.org/10.1371/journal.pone.0259540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. NCBI (2022) National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov. Accessed 1 June 2022

  22. Mokhtar MM, El Allali A (2022) PltRNAdb: plant transfer RNA database. PLoS One 17:e0268904. https://doi.org/10.1371/journal.pone.0268904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. MegaLTR (2022) MegaLTR. A web server for LTR-retrotransposons analysis in high-throughput data scale. https://bioinformatics.um6p.ma/MegaLTR/. Accessed 1 June 2022

  24. Szklarczyk D, Morris JH, Cook H et al (2016) The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res 45:D362–D368. https://doi.org/10.1093/nar/gkw937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Buels R, Yao E, Diesh CM et al (2016) JBrowse: a dynamic web platform for genome visualization and analysis. Genome Biol 17:66. https://doi.org/10.1186/s13059-016-0924-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. BLAST (2022) BLAST. https://blast.ncbi.nlm.nih.gov/Blast.cgi. Accessed 1 June 2022

Download references

Acknowledgments

The authors acknowledge the African Supercomputing Center at Mohamed VI Polytechnic University for the supercomputing resources made available for conducting the research reported in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achraf El Allali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mokhtar, M.M., Fouad, A.S., Abd-Elhalim, H.M., El Allali, A. (2023). CicerSpTEdb2.0: An Upgrade of Cicer Species Transposable Elements Database. In: Garcia, S., Nualart, N. (eds) Plant Genomic and Cytogenetic Databases. Methods in Molecular Biology, vol 2703. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3389-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3389-2_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3388-5

  • Online ISBN: 978-1-0716-3389-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics