Skip to main content

Detecting DNA Loops Using Tethered Particle Motion

  • Protocol
  • First Online:
Single Molecule Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2694))

  • 848 Accesses

Abstract

The range of motion of a micron-sized bead tethered by a single polymer provides a dynamic readout of the effective length of the polymer. The excursions of the bead may reflect the intrinsic flexibility and/or topology of the polymer as well as changes due to the action activity of ligands that bind the polymer. This is a simple yet powerful experimental approach to investigate such interactions between DNA and proteins as demonstrated by experiments with the lac repressor. This protein forms a stable, tetrameric oligomer with two binding sites and can produce a loop of DNA between recognition sites separated along the length of a DNA molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Braslavsky I, Amit R, Ali BMJ, Gileadi O, Oppenheim A, Stavans J (2001) Objective-type dark-field illumination for scattering from microbeads. Appl Opt 40(31):5650–5657

    Article  ADS  Google Scholar 

  2. Ucuncuoglu S, Schneider DA, Weeks ER, Dunlap D, Finzi L (2017) Multiplexed, tethered particle microscopy for studies of DNA-enzyme dynamics. In: Spies M, Chemla RY (eds) Methods in enzymology, vol 582. Academic Press, pp 415–435. https://doi.org/10.1016/bs.mie.2016.08.008

    Chapter  Google Scholar 

  3. Heidelinde RCD, Bart JV, Bernd R, Ian TY, Yuval G. A new optical method for characterizing single molecule interactions based on dark field microscopy. In: Jorg E, Zygmunt KG (eds), 2007. SPIE, p 644403

    Google Scholar 

  4. Zocchi G (2001) Force measurements on single molecular contacts through evanescent wave microscopy. Biophys J 81(5):2946–2953. https://doi.org/10.1016/S0006-3495(01)75934-6

    Article  Google Scholar 

  5. Zurla C, Franzini A, Galli G, Dunlap DD, Lewis DEA, Adhya S, Finzi L (2006) Novel tethered particle motion analysis of CI protein-mediated DNA looping in the regulation of bacteriophage Lambda. J Phys Condens Matter 18:S225–S234

    Article  ADS  Google Scholar 

  6. Finzi L, Gelles J (1995) Measurement of lactose repressor-mediated loop formation and breakdown in single DNA molecules. Science 267(5196):378–380

    Article  ADS  Google Scholar 

  7. Guerra RF, Imperadori L, Mantovani R, Dunlap DD, Finzi L (2007) DNA compaction by the nuclear factor-Y. Biophys J 93(1):176–182

    Article  Google Scholar 

  8. Ucuncuoglu S, Engel KL, Purohit PK, Dunlap DD, Schneider DA, Finzi L (2016) Direct characterization of transcription elongation by RNA polymerase I. PLoS One 11(7):e0159527. https://doi.org/10.1371/journal.pone.0159527

    Article  Google Scholar 

  9. Xu W, Yan Y, Artsimovitch I, Dunlap D, Finzi L (2022) Positive supercoiling favors transcription elongation through lac repressor-mediated DNA loops. Nucleic Acids Res 50(5):2826–2835. https://doi.org/10.1093/nar/gkac093

    Article  Google Scholar 

  10. Yin H, Landick R, Gelles J (1994) Tethered particle motion method for studying transcript elongation by a single RNA polymerase molecule. Biophys J 67(6):2468–2478

    Article  Google Scholar 

  11. Nelson PC, Zurla C, Brogioli D, Beausang JF, Finzi L, Dunlap D (2006) Tethered particle motion as a diagnostic of DNA tether length. J Phys Chem B 110(34):17260–17267. https://doi.org/10.1021/jp0630673

    Article  Google Scholar 

  12. Dixit S, Singh-Zocchi M, Hanne J, Zocchi G (2005) Mechanics of binding of a single integration-host-factor protein to DNA. Phys Rev Lett 94(11):118101

    Article  ADS  Google Scholar 

  13. Pouget N, Dennis C, Turlan C, Grigoriev M, Chandler M, Salome L (2004) Single-particle tracking for DNA tether length monitoring. Nucleic Acids Res 32(9):e73

    Article  Google Scholar 

  14. Kumar S, Manzo C, Zurla C, Ucuncuoglu S, Finzi L, Dunlap D (2014) Enhanced tethered-particle motion analysis reveals viscous effects. Biophys J 106(2):399–409. https://doi.org/10.1016/j.bpj.2013.11.4501

    Article  Google Scholar 

  15. Han L, Lui BH, Blumberg S, Beausang JF, Nelson PC, Phillips R (2009) Calibration of tethered particle motion experiments. In: Benham CJ, Harvey S, Olson WK, Sumners DWL, Swigon D (eds) Mathematics of DNA structure, function and interactions, IMA volumes in mathematics and its applications, vol 150. Springer, New York, pp 123–138. https://doi.org/10.1007/978-1-4419-0670-0_6

    Chapter  Google Scholar 

  16. Segall DE, Nelson PC, Phillips R (2006) Volume-exclusion effects in tethered-particle experiments: bead size matters. Phys Rev Lett 96(8):088306

    Article  ADS  Google Scholar 

  17. Kovari DT, Yan Y, Finzi L, Dunlap D (2018) Tethered particle motion: an easy technique for probing DNA topology and interactions with transcription factors. Methods Mol Biol 1665:317–340. https://doi.org/10.1007/978-1-4939-7271-5_17

    Article  Google Scholar 

  18. Joo C, Ha T (2012) Preparing sample chambers for single-molecule FRET. Cold Spring Harbor Protocols 2012 (10):pdb.prot071530. https://doi.org/10.1101/pdb.prot071530

  19. Bell NAW, Molloy JE (2020) Microfluidic flow-cell with passive flow control for microscopy applications. PLoS One 15(12):e0244103. https://doi.org/10.1371/journal.pone.0244103

    Article  Google Scholar 

  20. Laurens N, Bellamy SR, Harms AF, Kovacheva YS, Halford SE, Wuite GJ (2009) Dissecting protein-induced DNA looping dynamics in real time. Nucleic Acids Res 37(16):5454–5464. https://doi.org/10.1093/nar/gkp570

    Article  Google Scholar 

  21. Fulcrand G, Dages S, Zhi X, Chapagain P, Gerstman BS, Dunlap D, Leng F (2016) DNA supercoiling, a critical signal regulating the basal expression of the lac operon in Escherichia coli. Sci Rep 6:19243. https://doi.org/10.1038/srep19243

    Article  ADS  Google Scholar 

  22. Johnson S, van de Meent JW, Phillips R, Wiggins CH, Linden M (2014) Multiple LacI-mediated loops revealed by Bayesian statistics and tethered particle motion. Nucleic Acids Res 42(16):10265–10277. https://doi.org/10.1093/nar/gku563

    Article  Google Scholar 

  23. Yan Y, Xu W, Kumar S, Zhang A, Leng F, Dunlap D, Finzi L (2021) Negative DNA supercoiling makes protein-mediated looping deterministic and ergodic within the bacterial doubling time. Nucleic Acids Res 49(20):11550–11559. https://doi.org/10.1093/nar/gkab946

    Article  Google Scholar 

  24. Han L, Garcia HG, Blumberg S, Towles KB, Beausang JF, Nelson PC, Phillips R (2009) Concentration and length dependence of DNA looping in transcriptional regulation. PLoS One 4(5):e5621. https://doi.org/10.1371/journal.pone.0005621

    Article  ADS  Google Scholar 

  25. Rutkauskas D, Zhan H, Matthews KS, Pavone FS, Vanzi F (2009) Tetramer opening in LacI-mediated DNA looping. Proc Natl Acad Sci U S A 106(39):16627–16632. https://doi.org/10.1073/pnas.0904617106

    Article  ADS  Google Scholar 

  26. Priest DG, Cui L, Kumar S, Dunlap DD, Dodd IB, Shearwin KE (2014) Quantitation of the DNA tethering effect in long-range DNA looping in vivo and in vitro using the Lac and λ repressors. Proc Natl Acad Sci 111 (1):349–354. doi:https://doi.org/10.1073/pnas.1317817111

  27. Xu J, Liu K-W, Matthews KS, Biswal SL (2011) Monitoring DNA binding to Escherichia coli lactose repressor using quartz crystal microbalance with dissipation. Langmuir 27(8):4900–4905. https://doi.org/10.1021/la200056h

    Article  Google Scholar 

  28. Chen J, Matthews KS (1992) Deletion of lactose repressor carboxyl-terminal domain affects tetramer formation. J Biol Chem 267(20):13843–13850

    Article  Google Scholar 

  29. Shannon CE (1949) Communication in the presence of noise. Proc IRE 37(1):10–21. https://doi.org/10.1109/JRPROC.1949.232969

    Article  MathSciNet  Google Scholar 

  30. Carter BC, Shubeita GT, Gross SP (2005) Tracking single particles: a user-friendly quantitative evaluation. Phys Biol 2(1):60

    Article  ADS  Google Scholar 

  31. Hill DB, Macosko JC, Holzwarth GM (2008) Motion-enhanced, differential interference contrast (MEDIC) microscopy of moving vesicles in live cells: VE-DIC updated. J Microsc 231(3):433–439. https://doi.org/10.1111/j.1365-2818.2008.02054.x

    Article  MathSciNet  Google Scholar 

  32. Cnossen JP, Dulin D, Dekker NH (2014) An optimized software framework for real-time, high-throughput tracking of spherical beads. Rev Sci Instrum 85(10):10. https://doi.org/10.1063/1.4898178

    Article  Google Scholar 

  33. van Loenhout Marijn TJ, Kerssemakers JWJ, De Vlaminck I, Dekker C (2012) Non-bias-limited tracking of spherical particles, enabling nanometer resolution at low magnification. Biophys J 102(10):2362–2371. https://doi.org/10.1016/j.bpj.2012.03.073

    Article  Google Scholar 

  34. Huhle A, Klaue D, Brutzer H, Daldrop P, Joo S, Otto O, Keyser UF, Seidel R (2015) Camera-based three-dimensional real-time particle tracking at kHz rates and Angstrom accuracy. Nat Commun 6:5885. https://doi.org/10.1038/ncomms6885

    Article  ADS  Google Scholar 

  35. Otto O, Czerwinski F, Gornall JL, Stober G, Oddershede LB, Seidel R, Keyser UF (2010) Real-time particle tracking at 10,000 fps using optical fiber illumination. Opt Express 18(22):22722–22733

    Article  ADS  Google Scholar 

  36. Parthasarathy R (2012) Rapid, accurate particle tracking by calculation of radial symmetry centers. Nat Methods 9(7):724–726. https://doi.org/10.1038/nmeth.2071

    Article  Google Scholar 

  37. Kojima M, Mizuno S, Yoshise A (1989) A primal-dual interior point algorithm for linear programming. In: Megiddo N (ed) Progress in mathematical programming: interior-point and related methods. Springer New York, New York, NY, pp 29–47. https://doi.org/10.1007/978-1-4613-9617-8_2

    Chapter  Google Scholar 

  38. Mehrotra S (1992) On the implementation of a primal-dual interior point method. SIAM J Optim 2(4):575–601. https://doi.org/10.1137/0802028

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Kathleen Matthews generously provided the lac repressor used in this work. We are grateful to former Finzi Lab members for their contributions to the development of these TPM protocols. This work was supported by the NIH, Grant: R01GM084070 and R35GM149296 .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Dunlap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Qian, J., Collette, D., Finzi, L., Dunlap, D. (2024). Detecting DNA Loops Using Tethered Particle Motion. In: Heller, I., Dulin, D., Peterman, E.J. (eds) Single Molecule Analysis . Methods in Molecular Biology, vol 2694. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3377-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3377-9_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3376-2

  • Online ISBN: 978-1-0716-3377-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics