Skip to main content

Prediction of Transcription Factor Regulators and Gene Regulatory Networks in Tomato Using Binding Site Information

  • Protocol
  • First Online:
Plant Gene Regulatory Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2698))

Abstract

Gene regulatory networks (GRNs) represent the regulatory links between transcription factors (TF) and their target genes. In plants, they are essential to understand transcriptional programs that control important agricultural traits such as yield or (a)biotic stress response. Although several high- and low-throughput experimental methods have been developed to map GRNs in plants, these are sometimes expensive, come with laborious protocols, and are not always optimized for tomato, one of the most important horticultural crops worldwide. In this chapter, we present a computational method that covers two protocols: one protocol to map gene identifiers between two different tomato genome assemblies, and another protocol to predict putative regulators and delineate GRNs given a set of functionally related or coregulated genes by exploiting publicly available TF-binding information. As an example, we applied the motif enrichment protocol on tomato using upregulated genes in response to jasmonate, as well as upregulated and downregulated genes in plants with genotypes OENAM1 and nam1, respectively. We found that our protocol accurately infers the expected TFs as top enriched regulators and identifies GRNs functionally enriched in biological processes related with the experimental context under study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kulkarni SR, Vandepoele K (2020) Inference of plant gene regulatory networks using data-driven methods: a practical overview. Biochim Biophys Acta Gene Regul Mech 1863(6):194447. https://doi.org/10.1016/j.bbagrm.2019.194447

    Article  CAS  PubMed  Google Scholar 

  2. Schmitz RJ, Grotewold E, Stam M (2022) Cis-regulatory sequences in plants: their importance, discovery, and future challenges. Plant Cell 34(2):718–741. https://doi.org/10.1093/PLCELL/KOAB281

    Article  PubMed  Google Scholar 

  3. Heyndrickx KS, de Velde JV, Wang C, Weigel D, Vandepoele K (2014) A functional and evolutionary perspective on transcription factor binding in Arabidopsis thaliana. Plant Cell 26(10):3894–3910. https://doi.org/10.1105/tpc.114.130591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mejia-Guerra MK, Pomeranz M, Morohashi K, Grotewold E (2012) From plant gene regulatory grids to network dynamics. Biochim Biophys Acta 1819(5):454–465. https://doi.org/10.1016/J.BBAGRM.2012.02.016

    Article  CAS  PubMed  Google Scholar 

  5. Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316(5830):1497–1502. https://doi.org/10.1126/science.1141319

    Article  CAS  PubMed  Google Scholar 

  6. O’Malley RC, Huang SSC, Song L, Lewsey MG, Bartlett A, Nery JR et al (2016) Erratum: cistrome and epicistrome features shape the regulatory dna landscape (Cell (2016) 165(5) (1280–1292)). Cell 166(6):1598. https://doi.org/10.1016/j.cell.2016.08.063

    Article  CAS  PubMed  Google Scholar 

  7. Buenrostro JD, Wu B, Chang HY, Greenleaf WJ (2015) ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol 109:21.9.1–21.9.9. https://doi.org/10.1002/0471142727.mb2129s109

    Article  Google Scholar 

  8. Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z et al (2008) High-resolution mapping and characterization of open chromatin across the genome. Cell 132(2):311–322. https://doi.org/10.1016/j.cell.2007.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Franco-Zorrilla JM, López-Vidriero I, Carrasco JL, Godoy M, Vera P, Solano R (2014) DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc Natl Acad Sci U S A 111(6):2367–2372. https://doi.org/10.1073/pnas.1316278111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meng X, Brodsky MH, Wolfe SA (2005) A bacterial one-hybrid system for determining the DNA-binding specificity of transcription factors. Nat Biotechnol 23(8):988–994. https://doi.org/10.1038/nbt1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Franco-Zorrilla JM, Solano R (2017) Identification of plant transcription factor target sequences. Biochim Biophys Acta Gene Regul Mech 1860(1):21–30. https://doi.org/10.1016/j.bbagrm.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  12. Kulkarni SR, Marc Jones D, Vandepoele K (2019) Enhanced maps of transcription factor binding sites improve regulatory networks learned from accessible chromatin DatA. Plant Physiol 181(2):412–425. https://doi.org/10.1104/pp.19.00605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kulkarni SR, Vaneechoutte D, Van de Velde J, Vandepoele K (2018) TF2Network: predicting transcription factor regulators and gene regulatory networks in Arabidopsis using publicly available binding site information. Nucleic Acids Res 46(6):e31. https://doi.org/10.1093/nar/gkx1279

    Article  CAS  PubMed  Google Scholar 

  14. Wang R, Angenent GC, Seymour G, Maagd RA (2020) Revisiting the role of master regulators in tomato ripening. Trends Plant Sci 25(3):291–301. https://doi.org/10.1016/j.tplants.2019.11.005

    Article  CAS  PubMed  Google Scholar 

  15. Liu G-S, Li H-L, Grierson D, Fu D-Q (2022) NAC transcription factor family regulation of fruit ripening and quality: a review. Cell 11(3):525. https://doi.org/10.3390/cells11030525

    Article  CAS  Google Scholar 

  16. Gao Y, Fan ZQ, Zhang Q, Li HL, Liu GS, Jing Y et al (2021) A tomato NAC transcription factor, SlNAM1, positively regulates ethylene biosynthesis and the onset of tomato fruit ripening. Plant J 108(5):1317–1331. https://doi.org/10.1111/TPJ.15512

    Article  CAS  PubMed  Google Scholar 

  17. Du M, Zhao J, Tzeng DTW, Liu Y, Deng L, Yang T et al (2017) MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato. Plant Cell 29(8):1883–1906. https://doi.org/10.1105/TPC.16.00953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kajala K, Gouran M, Shaar-Moshe L, Mason GA, Rodriguez-Medina J, Kawa D et al (2021) Innovation, conservation, and repurposing of gene function in root cell type development. Cell. https://doi.org/10.1016/j.cell.2021.04.024

  19. Sato S, Tabata S, Hirakawa H, Asamizu E, Shirasawa K, Isobe S et al (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485(7400):635–641. https://doi.org/10.1038/nature11119

    Article  CAS  Google Scholar 

  20. Hosmani PS, Flores-Gonzalez M, Geest H, Maumus F, Bakker LV, Schijlen E et al (2019) An improved de novo assembly and annotation of the tomato reference genome using single-molecule sequencing, Hi-C proximity ligation and optical maps. bioRxiv:767764

    Google Scholar 

  21. Weirauch MT, Yang A, Albu M, Cote AG, Montenegro-Montero A, Drewe P et al (2014) Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158(6):1431–1443. https://doi.org/10.1016/j.cell.2014.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fornes O, Castro-Mondragon JA, Khan A, Van Der Lee R, Zhang X, Richmond PA et al (2020) JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 48(D1):D87–D92. https://doi.org/10.1093/nar/gkz1001

    Article  CAS  PubMed  Google Scholar 

  23. Tian F, Yang DC, Meng YQ, Jin J, Gao G (2020) PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Res 48(D1):D1104–D1D13. https://doi.org/10.1093/nar/gkz1020

    Article  CAS  PubMed  Google Scholar 

  24. Frith MC, Li MC, Weng Z (2003) Cluster-buster: finding dense clusters of motifs in DNA sequences. Nucleic Acids Res 31(13):3666–3668. https://doi.org/10.1093/nar/gkg540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grant CE, Bailey TL, Noble WS (2011) FIMO: scanning for occurrences of a given motif. Bioinformatics 27(7):1017–1018. https://doi.org/10.1093/bioinformatics/btr064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Van Bel M, Silvestri F, Weitz EM, Kreft L, Botzki A, Coppens F et al (2022) PLAZA 5.0: extending the scope and power of comparative and functional genomics in plants. Nucleic Acids Res 50(D1):D1468–D1D74. https://doi.org/10.1093/nar/gkab1024

    Article  CAS  PubMed  Google Scholar 

  27. Shumate A, Salzberg SL (2021) Liftoff: accurate mapping of gene annotations. Bioinformatics 37(12):1639–1643. https://doi.org/10.1093/bioinformatics/btaa1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li H (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34(18):3094–3100. https://doi.org/10.1093/bioinformatics/bty191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842. https://doi.org/10.1093/bioinformatics/btq033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico J-M, Gimenez-Ibanez S, Geerinck J et al (2011) The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23(2):701–715. https://doi.org/10.1105/tpc.110.080788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Song S, Qi T, Huang H, Ren Q, Wu D, Chang C et al (2011) The Jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect Jasmonate-regulated stamen development in Arabidopsis[C][W]. Plant Cell 23(3):1000–1013. https://doi.org/10.1105/tpc.111.083089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baldassarre V, Cabassi G, Spadafora ND, Aprile A, Müller CT, Rogers HJ et al (2015) Wounding tomato fruit elicits ripening-stage specific changes in gene expression and production of volatile compounds. J Exp Bot 66(5):1511–1526. https://doi.org/10.1093/jxb/eru516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu L, Guo J, Ma Z, Wang J, Zhou C (2018) Arabidopsis transcription factor MYB102 increases plant susceptibility to aphids by substantial activation of ethylene biosynthesis. Biomolecules 8(2):39. https://doi.org/10.3390/biom8020039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zegzouti H, Jones B, Frasse P, Marty C, Maitre A, Latch A et al (1999) Ethylene-regulated gene expression in tomato fruit: characterization of novel ethylene-responsive and ripening-related genes isolated by differential display. Plant J 18(6):589–600. https://doi.org/10.1046/j.1365-313x.1999.00483.x

    Article  CAS  PubMed  Google Scholar 

  35. Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21(3):972–984. https://doi.org/10.1105/tpc.108.063958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li X-D, Zhuang K-Y, Liu Z-M, Yang D-Y, Ma N-N, Meng Q-W (2016) Overexpression of a novel NAC-type tomato transcription factor, SlNAM1, enhances the chilling stress tolerance of transgenic tobacco. J Plant Physiol 204:54–65. https://doi.org/10.1016/j.jplph.2016.06.024

    Article  CAS  PubMed  Google Scholar 

  37. Sun L, Yuan B, Zhang M, Wang L, Cui M, Wang Q et al (2012) Fruit-specific RNAi-mediated suppression of SlNCED1 increases both lycopene and β-carotene contents in tomato fruit. J Exp Bot 63(8):3097–3108. https://doi.org/10.1093/jxb/ers026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fan Y, Yang W, Yan Q, Chen C, Li J (2019) Genome-wide identification and expression analysis of the protease inhibitor gene families in tomato. Genes 11(1):1. https://doi.org/10.3390/genes11010001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chini A, Fonseca S, Fernández G, Adie B, Chico JM, Lorenzo O et al (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448(7154):666–671. https://doi.org/10.1038/nature06006

    Article  CAS  PubMed  Google Scholar 

  40. Zhang F, Ke J, Zhang L, Chen R, Sugimoto K, Howe GA et al (2017) Structural insights into alternative splicing-mediated desensitization of jasmonate signaling. Proc Natl Acad Sci U S A 114(7):1720–1725. https://doi.org/10.1073/pnas.1616938114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maher KA, Bajic M, Kajala K, Reynoso M, Pauluzzi G, West DA et al (2018) Profiling of accessible chromatin regions across multiple plant species and cell types reveals common gene regulatory principles and new control modules. Plant Cell 30(1):15–36. https://doi.org/10.1105/tpc.17.00581

    Article  CAS  PubMed  Google Scholar 

  42. Vandepoele K (2017) A guide to the PLAZA 3.0 plant comparative genomic database. Methods Mol Biol 1533:183–200. https://doi.org/10.1007/978-1-4939-6658-5_10

    Article  CAS  PubMed  Google Scholar 

  43. Gaudet P, Škunca N, Hu JC, Dessimoz C (2017) Primer on the Gene Ontology. Methods Mol Biol 1446:25–37. https://doi.org/10.1007/978-1-4939-3743-1_3

Download references

Acknowledgments

This work was supported by a Bijzonder Onderzoeksfonds grant from Ghent University [BOF24Y2019001901] to NMP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaas Vandepoele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Manosalva Pérez, N., Vandepoele, K. (2023). Prediction of Transcription Factor Regulators and Gene Regulatory Networks in Tomato Using Binding Site Information. In: Kaufmann, K., Vandepoele, K. (eds) Plant Gene Regulatory Networks. Methods in Molecular Biology, vol 2698. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3354-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3354-0_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3353-3

  • Online ISBN: 978-1-0716-3354-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics