Skip to main content

Liquid Biopsy, a Potential New Detection Method in Heart Allograft Rejection

  • Protocol
  • First Online:
Liquid Biopsies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2695))

  • 676 Accesses

Abstract

Allografts rejection remains the most important reason causing allograft dysfunction in heart transplantation recipients. Currently, the golden standard for detecting graft rejection is endomyocardial biopsy (EMB). As a new noninvasive technique, liquid biopsy emerges along with the great developments of droplet-based digital PCR and the various optimizations of next-generation sequencing technologies, which is also cheaper than EMB. This review introduces several types of liquid biopsy and its application in heart transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Vlaminck I, Valantine HA, Snyder TM et al (2014) Circulating cell-free DNA enables noninvasive diagnosis of heart transplant rejection. Sci Transl Med 6(241):241ra77. https://doi.org/10.1126/scitranslmed.3007803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Marboe CC, Billingham M, Eisen H et al (2005) Nodular endocardial infiltrates (Quilty lesions) cause significant variability in diagnosis of ISHLT grade 2 and 3A rejection in cardiac allograft recipients. J Heart Lung Transplant 24(7 Suppl):S219–S226. https://doi.org/10.1016/j.healun.2005.04.001

    Article  PubMed  Google Scholar 

  3. Crespo-Leiro MG, Stypmann J, Schulz U et al (2016) Clinical usefulness of gene-expression profile to rule out acute rejection after heart transplantation: CARGO II. Eur Heart J 37(33):2591–2601. https://doi.org/10.1093/eurheartj/ehv682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Di Francesco A, Fedrigo M, Santovito D et al (2018) MicroRNA signatures in cardiac biopsies and detection of allograft rejection. J Heart Lung Transplant 37(11):1329–1340. https://doi.org/10.1016/j.healun.2018.06.010

    Article  PubMed  Google Scholar 

  5. Kittleson MM, Skojec DV, Wittstein IS et al (2009) The change in B-type natriuretic peptide levels over time predicts significant rejection in cardiac transplant recipients. J Heart Lung Transplant 28(7):704–709. https://doi.org/10.1016/j.healun.2009.04.019

    Article  PubMed  Google Scholar 

  6. Schwarzenbach H, Hoon DS, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11(6):426–437. https://doi.org/10.1038/nrc3066

    Article  CAS  PubMed  Google Scholar 

  7. Matar AJ, Sachs DH, Duran-Struuck R (2022) The MHC-characterized miniature swine: lessons learned from a 40-year experience in transplantation. Transplantation 106(5):928–937. https://doi.org/10.1097/TP.0000000000003977

  8. Gonzalez-Nolasco B, Wang M, Prunevieille A, Benichou G (2018) Emerging role of exosomes in allorecognition and allograft rejection. Curr Opin Organ Transplant 23(1):22–27. https://doi.org/10.1097/MOT.0000000000000489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morelli AE, Bracamonte-Baran W, Burlingham WJ (2017) Donor-derived exosomes: the trick behind the semidirect pathway of allorecognition. Curr Opin Organ Transplant 22(1):46–54. https://doi.org/10.1097/MOT.0000000000000372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Naito T, Okada Y (2021) HLA imputation and its application to genetic and molecular fine-mapping of the MHC region in autoimmune diseases. Semin Immunopathol. https://doi.org/10.1007/s00281-021-00901-9

  11. Courtwright AM, Kamoun M, Kearns J, Diamond JM, Golberg HJ (2020) The impact of HLA-DR mismatch status on retransplant-free survival and bronchiolitis obliterans syndrome–free survival among sensitized lung transplant recipients. J Heart Lung Transplant 39(12):1455–1462. https://doi.org/10.1016/j.healun.2020.09.016

    Article  PubMed  Google Scholar 

  12. Osorio-Jaramillo E, Haasnoot GW, Kaider A et al (2020) Molecular-level HLA mismatch is associated with rejection and worsened graft survival in heart transplant recipients – a retrospective study. Transpl Int 33(9):1078–1088. https://doi.org/10.1111/tri.13657

    Article  CAS  PubMed  Google Scholar 

  13. Opelz G, Mytilineos J, Scherer S et al (1991) Survival of DNA HLA-DR typed and matched cadaver kidney transplants. Collaborative Transplant Study. Lancet 338(8765):461–463. https://doi.org/10.1016/0140-6736(91)90540-6

    Article  CAS  PubMed  Google Scholar 

  14. Takemoto SK, Terasaki PI, Gjertson DW, Cecka JM (2000) Twelve years’ experience with national sharing of HLA-matched cadaveric kidneys for transplantation. N Engl J Med 343(15):1078–1084. https://doi.org/10.1056/nejm200010123431504

    Article  CAS  PubMed  Google Scholar 

  15. Ogonek J, Kralj Juric M, Ghimire S et al (2016) Immune reconstitution after allogeneic hematopoietic stem cell transplantation. Front Immunol 7:507. https://doi.org/10.3389/fimmu.2016.00507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alvarez M, Sun K, Murphy WJ (2016) Mouse host unlicensed NK cells promote donor allogeneic bone marrow engraftment. Blood 127(9):1202–1205. https://doi.org/10.1182/blood-2015-08-665570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ruggeri L, Capanni M, Urbani E et al (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295(5562):2097–2100. https://doi.org/10.1126/science.1068440

    Article  CAS  PubMed  Google Scholar 

  18. Faridi RM, Kemp TJ, Dharmani-Khan P et al (2016) Donor-recipient matching for KIR genotypes reduces chronic GVHD and missing inhibitory KIR ligands protect against relapse after Myeloablative, HLA matched hematopoietic cell transplantation. PLoS One 11(6):e0158242. https://doi.org/10.1371/journal.pone.0158242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Littera R, Piredda G, Argiolas D et al (2017) KIR and their HLA class I ligands: two more pieces towards completing the puzzle of chronic rejection and graft loss in kidney transplantation. PLoS One 12(7):e0180831. https://doi.org/10.1371/journal.pone.0180831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ritari J, Hyvärinen K, Koskela S et al (2019) Genomic prediction of relapse in recipients of allogeneic haematopoietic stem cell transplantation. Leukemia 33(1):240–248. https://doi.org/10.1038/s41375-018-0229-3

    Article  CAS  PubMed  Google Scholar 

  21. Zhu Q, Yan L, Liu Q et al (2018) Exome chip analyses identify genes affecting mortality after HLA-matched unrelated-donor blood and marrow transplantation. Blood 131(22):2490–2499. https://doi.org/10.1182/blood-2017-11-817973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cristiano S, Leal A, Phallen J et al (2019) Genome-wide cell-free DNA fragmentation in patients with cancer. Nature 570(7761):385–389. https://doi.org/10.1038/s41586-019-1272-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Che H, Villela D, Dimitriadou E et al (2020) Noninvasive prenatal diagnosis by genome-wide haplotyping of cell-free plasma DNA. Genet Med 22(5):962–973. https://doi.org/10.1038/s41436-019-0748-y

    Article  CAS  PubMed  Google Scholar 

  24. Lo YM, Corbetta N, Chamberlain PF et al (1997) Presence of fetal DNA in maternal plasma and serum. Lancet 350(9076):485–487. https://doi.org/10.1016/s0140-6736(97)02174-0

    Article  CAS  PubMed  Google Scholar 

  25. Adamek M, Opelz G, Klein K, Morath C, Tran TH (2016) A fast and simple method for detecting and quantifying donor-derived cell-free DNA in sera of solid organ transplant recipients as a biomarker for graft function. Clin Chem Lab Med 54(7):1147–1155. https://doi.org/10.1515/cclm-2015-0622

    Article  CAS  PubMed  Google Scholar 

  26. Snyder TM, Khush KK, Valantine HA, Quake SR (2011) Universal noninvasive detection of solid organ transplant rejection. Proc Natl Acad Sci U S A 108(15):6229–6234. https://doi.org/10.1073/pnas.1013924108

    Article  PubMed  PubMed Central  Google Scholar 

  27. Agbor-Enoh S, Tunc I, De Vlaminck I et al (2017) Applying rigor and reproducibility standards to assay donor-derived cell-free DNA as a non-invasive method for detection of acute rejection and graft injury after heart transplantation. J Heart Lung Transplant 36(9):1004–1012. https://doi.org/10.1016/j.healun.2017.05.026

    Article  PubMed  PubMed Central  Google Scholar 

  28. Van Aelst LN, Summer G, Li S et al (2016) RNA profiling in human and murine transplanted hearts: identification and validation of therapeutic targets for acute cardiac and renal allograft rejection. Am J Transplant 16(1):99–110. https://doi.org/10.1111/ajt.13421

    Article  CAS  PubMed  Google Scholar 

  29. Zhang A, Wang K, Zhou C et al (2017) Knockout of microRNA-155 ameliorates the Th1/Th17 immune response and tissue injury in chronic rejection. J Heart Lung Transplant 36(2):175–184. https://doi.org/10.1016/j.healun.2016.04.018

    Article  PubMed  Google Scholar 

  30. Duong Van Huyen JP, Tible M, Gay A et al (2014) MicroRNAs as non-invasive biomarkers of heart transplant rejection. Eur Heart J 35(45):3194–3202. https://doi.org/10.1093/eurheartj/ehu346

    Article  CAS  PubMed  Google Scholar 

  31. Sukma Dewi I, Hollander Z, Lam KK et al (2017) Association of Serum MiR-142-3p and MiR-101-3p levels with acute cellular rejection after heart transplantation. PLoS One 12(1):e0170842. https://doi.org/10.1371/journal.pone.0170842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. So JBY, Kapoor R, Zhu F et al (2021) Development and validation of a serum microRNA biomarker panel for detecting gastric cancer in a high-risk population. Gut 70(5):829–837. https://doi.org/10.1136/gutjnl-2020-322065

    Article  CAS  PubMed  Google Scholar 

  33. Patel PC, Hill DA, Ayers CR et al (2014) High-sensitivity cardiac troponin I assay to screen for acute rejection in patients with heart transplant. Circ Heart Fail 7(3):463–469. https://doi.org/10.1161/circheartfailure.113.000697

    Article  CAS  PubMed  Google Scholar 

  34. Tran A, Fixler D, Huang R, Meza T, Lacelle C, Das BB (2016) Donor-specific HLA alloantibodies: impact on cardiac allograft vasculopathy, rejection, and survival after pediatric heart transplantation. J Heart Lung Transplant 35(1):87–91. https://doi.org/10.1016/j.healun.2015.08.008

    Article  PubMed  Google Scholar 

  35. Clerkin KJ, Farr MA, Restaino SW et al (2017) Donor-specific anti-HLA antibodies with antibody-mediated rejection and long-term outcomes following heart transplantation. J Heart Lung Transplant 36(5):540–545. https://doi.org/10.1016/j.healun.2016.10.016

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, C., Wang, G. (2023). Liquid Biopsy, a Potential New Detection Method in Heart Allograft Rejection. In: Huang, T., Yang, J., Tian, G. (eds) Liquid Biopsies. Methods in Molecular Biology, vol 2695. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3346-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3346-5_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3345-8

  • Online ISBN: 978-1-0716-3346-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics