Skip to main content

Identification of Plasma Metabolites Associated with Lung Cancer Survival

  • Protocol
  • First Online:
Liquid Biopsies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2695))

  • 630 Accesses

Abstract

Limited knowledge has been reported regarding the performance of plasma metabolomics for predicting lung cancer prognosis. In this chapter, we compared the plasma metabolomics of lung cancer patients with differential disease-free survival (DFS, <3 years vs. >4 years) using liquid chromatography–mass spectrometry. We identified 29 survival-related aqueous metabolites but no lipid metabolites. Amino acids and organic acids constitute the majority of these metabolites. The metabolic pathways of these metabolites were cysteine and methionine metabolism and arginine biosynthesis. The Cox proportional hazards regression models confirmed the predictive values of 18 metabolites for DFS, while the phosphocholine and xanthine showed independent predictive values. Regarding cancer phenotypes, thelephoric acid, phosphocholine, inosine, 3-hydroxyanthranilic acid, hypoxanthine, xanthine, and 4-hydroxybenzoic acid showed good correction with lymph node metastasis. Taken together, plasma metabolomics is a powerful tool for identifying prognostic metabolites of lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Global Burden of Disease 2019 Cancer Collaboration (2021) Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: a systematic analysis for the global burden of disease study 2019. JAMA Oncol 2021:420. https://doi.org/10.1001/jamaoncol.2021.6987

    Article  Google Scholar 

  2. Pietzner M, Stewart ID, Raffler J, Khaw KT, Michelotti GA, Kastenmuller G et al (2021) Plasma metabolites to profile pathways in noncommunicable disease multimorbidity. Nat Med 27(3):471–479. https://doi.org/10.1038/s41591-021-01266-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rinschen MM, Ivanisevic J, Giera M, Siuzdak G (2019) Identification of bioactive metabolites using activity metabolomics. Nat Rev Mol Cell Biol 20(6):353–367. https://doi.org/10.1038/s41580-019-0108-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Johnson CHIJ, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 17:7. https://doi.org/10.1038/nrm.2016.25

    Article  CAS  Google Scholar 

  5. Jasbi P, Wang D, Cheng SL, Fei Q, Cui JY, Liu L et al (2019) Breast cancer detection using targeted plasma metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 1105:26–37. https://doi.org/10.1016/j.jchromb.2018.11.029

    Article  CAS  PubMed  Google Scholar 

  6. Ahn HS, Yeom J, Yu J, Kwon YI, Kim JH, Kim K (2020) Convergence of plasma metabolomics and proteomics analysis to discover signatures of high-grade serous ovarian cancer. Cancers (Basel) 12(11). https://doi.org/10.3390/cancers12113447

  7. Liu X, Zhang M, Cheng X, Liu X, Sun H, Guo Z et al (2020) LC-MS-based plasma metabolomics and Lipidomics analyses for differential diagnosis of bladder cancer and renal cell carcinoma. Front Oncol 10:717. https://doi.org/10.3389/fonc.2020.00717

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lin X, Lecuyer L, Liu X, Triba MN, Deschasaux-Tanguy M, Demidem A et al (2021) Plasma metabolomics for discovery of early metabolic markers of prostate cancer based on ultra-high-performance liquid chromatography-high resolution mass spectrometry. Cancers (Basel) 13(13). https://doi.org/10.3390/cancers13133140

  9. Nezami Ranjbar MR, Luo Y, Di Poto C, Varghese RS, Ferrarini A, Zhang C et al (2015) GC-MS based plasma metabolomics for identification of candidate biomarkers for hepatocellular carcinoma in Egyptian cohort. PLoS One 10(6):e0127299. https://doi.org/10.1371/journal.pone.0127299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang S, Guo Y, Li ZW, Shui G, Tian H, Li BW et al (2021) Identification and validation of plasma Metabolomic signatures in precancerous gastric lesions that Progress to cancer. JAMA Netw Open 4(6):e2114186. https://doi.org/10.1001/jamanetworkopen.2021.14186

    Article  PubMed  PubMed Central  Google Scholar 

  11. Patterson AD, Maurhofer O, Beyoglu D, Lanz C, Krausz KW, Pabst T et al (2011) Aberrant lipid metabolism in hepatocellular carcinoma revealed by plasma metabolomics and lipid profiling. Cancer Res 71(21):6590–6600. https://doi.org/10.1158/0008-5472.CAN-11-0885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ke C, Hou Y, Zhang H, Fan L, Ge T, Guo B et al (2015) Large-scale profiling of metabolic dysregulation in ovarian cancer. Int J Cancer 136(3):516–526. https://doi.org/10.1002/ijc.29010

    Article  CAS  PubMed  Google Scholar 

  13. Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, Barrette M et al (2021) MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res 49(W1):W388–WW96. https://doi.org/10.1093/nar/gkab382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wishart DS (2019) Metabolomics for investigating physiological and pathophysiological processes. Physiol Rev 99(4):1819–1875. https://doi.org/10.1152/physrev.00035.2018

    Article  CAS  PubMed  Google Scholar 

  15. Ang JE, Pandher R, Ang JC, Asad YJ, Henley AT, Valenti M et al (2016) Plasma metabolomic changes following PI3K inhibition as pharmacodynamic biomarkers: preclinical discovery to phase I trial evaluation. Mol Cancer Ther 15(6):1412–1424. https://doi.org/10.1158/1535-7163.MCT-15-0815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Swietlik EM, Ghataorhe P, Zalewska KI, Wharton J, Howard LS, Taboada D et al (2021) Plasma metabolomics exhibit response to therapy in chronic thromboembolic pulmonary hypertension. Eur Respir J 57(4). https://doi.org/10.1183/13993003.03201-2020

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, P., Yuan, Y., Qiu, M. (2023). Identification of Plasma Metabolites Associated with Lung Cancer Survival. In: Huang, T., Yang, J., Tian, G. (eds) Liquid Biopsies. Methods in Molecular Biology, vol 2695. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3346-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3346-5_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3345-8

  • Online ISBN: 978-1-0716-3346-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics