Skip to main content

Protein Cages and Nanostructures Constructed from Protein Nanobuilding Blocks

  • Protocol
  • First Online:
Protein Cages

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2671))

Abstract

Protein cages and nanostructures are promising biocompatible medical materials, such as vaccines and drug carriers. Recent advances in designed protein nanocages and nanostructures have opened up cutting-edge applications in the fields of synthetic biology and biopharmaceuticals. A simple approach for constructing self-assembling protein nanocages and nanostructures is the design of a fusion protein composed of two different proteins forming symmetric oligomers. In this chapter, we describe the design and methods of protein nanobuilding blocks (PN-Blocks) using a dimeric de novo protein WA20 to construct self-assembling protein cages and nanostructures. A protein nanobuilding block (PN-Block), WA20-foldon, was developed by fusing an intermolecularly folded dimeric de novo protein WA20 and a trimeric foldon domain from bacteriophage T4 fibritin. The WA20-foldon self-assembled into several oligomeric nanoarchitectures in multiples of 6-mer. De novo extender protein nanobuilding blocks (ePN-Blocks) were also developed by fusing tandemly two WA20 with various linkers, to construct self-assembling cyclized and extended chain-like nanostructures. These PN-Blocks would be useful for the construction of self-assembling protein cages and nanostructures and their potential applications in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Herrera Estrada LP, Champion JA (2015) Protein nanoparticles for therapeutic protein delivery. Biomater Sci 3:787–799

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Y, Ardejani MS, Orner BP (2016) Design and applications of protein-cage-based nanomaterials. Chem Asian J 11:2814–2828

    Article  CAS  PubMed  Google Scholar 

  3. Bhaskar S, Lim S (2017) Engineering protein nanocages as carriers for biomedical applications. NPG Asia Mater 9:e371

    Article  PubMed  PubMed Central  Google Scholar 

  4. Heddle JG, Chakraborti S, Iwasaki K (2017) Natural and artificial protein cages: design, structure and therapeutic applications. Curr Opin Struct Biol 43:148–155

    Article  CAS  PubMed  Google Scholar 

  5. Diaz D, Care A, Sunna A (2018) Bioengineering strategies for protein-based nanoparticles. Genes (Basel) 9:370

    Article  PubMed  Google Scholar 

  6. Neek M, Kim TI, Wang SW (2019) Protein-based nanoparticles in cancer vaccine development. Nanomedicine: NBM 15:164–174

    Article  CAS  Google Scholar 

  7. Yeates TO, Liu Y, Laniado J (2016) The design of symmetric protein nanomaterials comes of age in theory and practice. Curr Opin Struct Biol 39:134–143

    Article  PubMed  Google Scholar 

  8. Kobayashi N, Arai R (2017) Design and construction of self-assembling supramolecular protein complexes using artificial and fusion proteins as nanoscale building blocks. Curr Opin Biotech 46:57–65

    Article  CAS  PubMed  Google Scholar 

  9. Arai R (2018) Hierarchical design of artificial proteins and complexes toward synthetic structural biology. Biophys Rev 10:391–410

    Article  CAS  PubMed  Google Scholar 

  10. Miyamoto T, Hayashi Y, Yoshida K, Watanabe H, Uchihashi T, Yonezawa K, Shimizu N, Kamikubo H, Hirota S (2019) Construction of a quadrangular tetramer and a cage-like hexamer from three-helix bundle-linked fusion proteins. ACS Synth Biol 8:1112–1120

    Article  CAS  PubMed  Google Scholar 

  11. Stupka I, Heddle JG (2020) Artificial protein cages – inspiration, construction, and observation. Curr Opin Struct Biol 64:66–73

    Article  CAS  PubMed  Google Scholar 

  12. Laniado J, Cannon KA, Miller JE, Sawaya MR, McNamara DE, Yeates TO (2021) Geometric lessons and design strategies for nanoscale protein cages. ACS Nano 15:4277–4286

    Article  CAS  PubMed  Google Scholar 

  13. Butterfield GL, Lajoie MJ, Gustafson HH, Sellers DL, Nattermann U, Ellis D, Bale JB, Ke S, Lenz GH, Yehdego A, Ravichandran R, Pun SH, King NP, Baker D (2017) Evolution of a designed protein assembly encapsulating its own RNA genome. Nature 552:415–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Terasaka N, Azuma Y, Hilvert D (2018) Laboratory evolution of virus-like nucleocapsids from nonviral protein cages. Proc Natl Acad Sci U S A 115:5432–5437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marcandalli J, Fiala B, Ols S, Perotti M, de van der Schueren W, Snijder J, Hodge E, Benhaim M, Ravichandran R, Carter L, Sheffler W, Brunner L, Lawrenz M, Dubois P, Lanzavecchia A, Sallusto F, Lee KK, Veesler D, Correnti CE, Stewart LJ, Baker D, Lore K, Perez L, King NP (2019) Induction of potent neutralizing antibody responses by a designed protein nanoparticle vaccine for respiratory syncytial virus. Cell 176:1420–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Edwardson TGW, Tetter S, Hilvert D (2020) Two-tier supramolecular encapsulation of small molecules in a protein cage. Nat Commun 11:5410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Walls AC, Fiala B, Schafer A, Wrenn S, Pham MN, Murphy M, Tse LV, Shehata L, O’Connor MA, Chen C, Navarro MJ, Miranda MC, Pettie D, Ravichandran R, Kraft JC, Ogohara C, Palser A, Chalk S, Lee EC, Guerriero K, Kepl E, Chow CM, Sydeman C, Hodge EA, Brown B, Fuller JT, Dinnon KH 3rd, Gralinski LE, Leist SR, Gully KL, Lewis TB, Guttman M, Chu HY, Lee KK, Fuller DH, Baric RS, Kellam P, Carter L, Pepper M, Sheahan TP, Veesler D, King NP (2020) Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. Cell 183:1367–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Divine R, Dang HV, Ueda G, Fallas JA, Vulovic I, Sheffler W, Saini S, Zhao YT, Raj IX, Morawski PA, Jennewein MF, Homad LJ, Wan YH, Tooley MR, Seeger F, Etemadi A, Fahning ML, Lazarovits J, Roederer A, Walls AC, Stewart L, Mazloomi M, King NP, Campbell DJ, McGuire AT, Stamatatos L, Ruohola-Baker H, Mathieu J, Veesler D, Baker D (2021) Designed proteins assemble antibodies into modular nanocages. Science:372

    Google Scholar 

  19. Ben-Sasson AJ, Watson JL, Sheffler W, Johnson MC, Bittleston A, Somasundaram L, Decarreau J, Jiao F, Chen J, Mela I, Drabek AA, Jarrett SM, Blacklow SC, Kaminski CF, Hura GL, De Yoreo JJ, Kollman JM, Ruohola-Baker H, Derivery E, Baker D (2021) Design of biologically active binary protein 2D materials. Nature 589:468–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Padilla JE, Colovos C, Yeates TO (2001) Nanohedra: using symmetry to design self assembling protein cages, layers, crystals, and filaments. Proc Natl Acad Sci U S A 98:2217–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lai YT, Reading E, Hura GL, Tsai KL, Laganowsky A, Asturias FJ, Tainer JA, Robinson CV, Yeates TO (2014) Structure of a designed protein cage that self-assembles into a highly porous cube. Nat Chem 6:1065–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kawakami N, Kondo H, Matsuzawa Y, Hayasaka K, Nasu E, Sasahara K, Arai R, Miyamoto K (2018) Design of hollow protein nanoparticles with modifiable interior and exterior surfaces. Angew Chem Int Ed 57:12400–12404

    Article  CAS  Google Scholar 

  23. Obata J, Kawakami N, Tsutsumi A, Nasu E, Miyamoto K, Kikkawa M, Arai R (2021) Icosahedral 60-meric porous structure of designed supramolecular protein nanoparticle TIP60. Chem Commun 57:10226–10229

    Article  CAS  Google Scholar 

  24. Arai R, Kobayashi N, Kimura A, Sato T, Matsuo K, Wang AF, Platt JM, Bradley LH, Hecht MH (2012) Domain-swapped dimeric structure of a stable and functional de novo four-helix bundle protein, WA20. J Phys Chem B 116:6789–6797

    Article  CAS  PubMed  Google Scholar 

  25. Kobayashi N, Yanase K, Sato T, Unzai S, Hecht MH, Arai R (2015) Self-assembling nano-architectures created from a protein nano-building block using an intermolecularly folded dimeric de novo protein. J Am Chem Soc 137:11285–11293

    Article  CAS  PubMed  Google Scholar 

  26. Kobayashi N, Inano K, Sasahara K, Sato T, Miyazawa K, Fukuma T, Hecht MH, Song C, Murata K, Arai R (2018) Self-assembling supramolecular nanostructures constructed from de novo extender protein nanobuilding blocks. ACS Synth Biol 7:1381–1394

    Article  CAS  PubMed  Google Scholar 

  27. Sontz PA, Bailey JB, Ahn S, Tezcan FA (2015) A metal organic framework with spherical protein nodes: rational chemical design of 3D protein crystals. J Am Chem Soc 137:11598–11601

    Article  CAS  PubMed  Google Scholar 

  28. Irumagawa S, Hiemori K, Saito S, Tateno H, Arai R (2022) Self-assembling lectin nano-block oligomers enhance binding avidity to glycans. Int J Mol Sci 23:676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shimizu N, Mori T, Nagatani Y, Ohta H, Saijo S, Takagi H, Takahashi M, Yatabe K, Kosuge T, Igarashi N (2019) BL-10C, the small-angle x-ray scattering beamline at the photon factory. AIP Conf Proc 2054:060041

    Article  Google Scholar 

  30. Takagi H, Igarashi N, Mori T, Saijyo S, Ohta H, Nagatani Y, Kosuge T, Shimizu N (2016) Upgrade of small angle x-ray scattering beamline BL-6A at the photon factory. AIP Conf Proc 1741:030018

    Article  Google Scholar 

  31. Guthe S, Kapinos L, Moglich A, Meier S, Grzesiek S, Kiefhaber T (2004) Very fast folding and association of a trimerization domain from bacteriophage T4 fibritin. J Mol Biol 337:905–915

    Article  PubMed  Google Scholar 

  32. Arai R, Ueda H, Kitayama A, Kamiya N, Nagamune T (2001) Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Eng 14:529–532

    Article  CAS  PubMed  Google Scholar 

  33. Arai R, Wriggers W, Nishikawa Y, Nagamune T, Fujisawa T (2004) Conformations of variably linked chimeric proteins evaluated by synchrotron X-ray small-angle scattering. Proteins 57:829–838

    Article  CAS  PubMed  Google Scholar 

  34. Arai R (2021) Design of helical linkers for fusion proteins and protein-based nanostructures. Methods Enzymol 647:209–230

    Article  CAS  PubMed  Google Scholar 

  35. Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) How to measure and predict the molar absorption-coefficient of a protein. Protein Sci 4:2411–2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shimizu N, Yatabe K, Nagatani Y, Saijyo S, Kosuge T, Igarashi N (2016) Software development for analysis of small-angle X-ray scattering data. AIP Conf Proc 1741:050017

    Article  Google Scholar 

  37. Glatter O (1980) Evaluation of small-angle scattering data from lamellar and cylindrical particles by the indirect Fourier transformation method. J Appl Crystallogr 13:577–584

    Article  Google Scholar 

  38. Glatter O, Kratky O (1982) Small-angle X-ray scattering. Academic Press, New York

    Google Scholar 

  39. Brunner-Popela J, Glatter O (1997) Small-angle scattering of interacting particles .1. Basic principles of a global evaluation technique. J Appl Crystallogr 30:431–442

    Article  CAS  Google Scholar 

  40. Franke D, Petoukhov MV, Konarev PV, Panjkovich A, Tuukkanen A, Mertens HDT, Kikhney AG, Hajizadeh NR, Franklin JM, Jeffries CM, Svergun DI (2017) ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J Appl Crystallogr 50:1212–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Franke D, Svergun DI (2009) DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J Appl Crystallogr 42:342–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Volkov VV, Svergun DI (2003) Uniqueness of ab initio shape determination in small-angle scattering. J Appl Crystallogr 36:860–864

    Article  CAS  Google Scholar 

  43. Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 76:2879–2886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D 66:486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Svergun D, Barberato C, Koch MHJ (1995) CRYSOL – a program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Crystallogr 28:768–773

    Article  CAS  Google Scholar 

  46. Trewhella J, Duff AP, Durand D, Gabel F, Guss JM, Hendrickson WA, Hura GL, Jacques DA, Kirby NM, Kwan AH, Perez J, Pollack L, Ryan TM, Sali A, Schneidman-Duhovny D, Schwede T, Svergun DI, Sugiyama M, Tainer JA, Vachette P, Westbrook J, Whitten AE (2017) 2017 publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution: an update. Acta Crystallogr D 73:710–728

    Article  CAS  Google Scholar 

  47. Schneidman-Duhovny D, Hammel M, Tainer JA, Sali A (2016) FoXS, FoXSDock and MultiFoXS: single-state and multi-state structural modeling of proteins and their complexes based on SAXS profiles. Nucleic Acids Res 44:W424–W429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Petoukhov MV, Franke D, Shkumatov AV, Tria G, Kikhney AG, Gajda M, Gorba C, Mertens HDT, Konarev PV, Svergun DI (2012) New developments in the ATSAS program package for small-angle scattering data analysis. J Appl Crystallogr 45:342–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Patel SC, Bradley LH, Jinadasa SP, Hecht MH (2009) Cofactor binding and enzymatic activity in an unevolved superfamily of de novo designed 4-helix bundle proteins. Protein Sci 18:1388–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hecht MH, Das A, Go A, Bradley LH, Wei Y (2004) De novo proteins from designed combinatorial libraries. Protein Sci 13:1711–1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kimura N, Mochizuki K, Umezawa K, Hecht MH, Arai R (2020) Hyperstable de novo protein with a dimeric bisecting topology. ACS Synth Biol 9:254–259

    Article  CAS  PubMed  Google Scholar 

  52. Irumagawa S, Kobayashi K, Saito Y, Miyata T, Umetsu M, Kameda T, Arai R (2021) Rational thermostabilisation of four-helix bundle dimeric de novo proteins. Sci Rep 11:7526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tao Y, Strelkov SV, Mesyanzhinov VV, Rossmann MG (1997) Structure of bacteriophage T4 fibritin: a segmented coiled coil and the role of the C-terminal domain. Structure 5:789–798

    Article  CAS  PubMed  Google Scholar 

  54. Yokoi N, Inaba H, Terauchi M, Stieg AZ, Sanghamitra NJ, Koshiyama T, Yutani K, Kanamaru S, Arisaka F, Hikage T, Suzuki A, Yamane T, Gimzewski JK, Watanabe Y, Kitagawa S, Ueno T (2010) Construction of robust bio-nanotubes using the controlled self-assembly of component proteins of bacteriophage T4. Small 6:1873–1879

    Article  CAS  PubMed  Google Scholar 

  55. van den Ent F, Lowe J (2006) RF cloning: a restriction-free method for inserting target genes into plasmids. J Biochem Biophys Methods 67:67–74

    Article  PubMed  Google Scholar 

  56. Unger T, Jacobovitch Y, Dantes A, Bernheim R, Peleg Y (2010) Applications of the Restriction Free (RF) cloning procedure for molecular manipulations and protein expression. J Struct Biol 172:34–44

    Article  CAS  PubMed  Google Scholar 

  57. Davis MW, Jorgensen EM (2022) ApE, A plasmid Editor: a freely available DNA manipulation and visualization program. Front Bioinform 2:818619

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Prof. Michael Hecht at Princeton University for the kind gift of the expression plasmid of WA20. We thank Prof. Takaaki Sato, Mr. Kouichi Inano, and Dr. Keiichi Yanase at Shinshu University for help in SAXS experiments and analysis. We thank Prof. Nobutaka Shimizu and Photon Factory (PF) staff for help in synchrotron SAXS experiments which were performed at PF, KEK under the approval of PF program advisory committee (Proposal No. 2014G111, 2016G153, and 2016G606). We thank Prof. Nobuyasu Koga, Dr. Rie Koga, and Dr. Takahiro Kosugi at the Institute for Molecular Science (IMS) for help in SEC-MALS experiments. This work was supported by Joint Research of IMS (IMS program No. 603, 206, 221). This work was supported by JSPS Research Fellowships (DC2) and JSPS KAKENHI Grant Numbers JP14J10185 and JP16H06837 to N.K., and JSPS KAKENHI Grant Numbers JP24113707, JP24780097, JP16K05841, JP16H00761, JP17KK0104, and JP19H02522 to R.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoichi Arai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kobayashi, N., Arai, R. (2023). Protein Cages and Nanostructures Constructed from Protein Nanobuilding Blocks. In: Ueno, T., Lim, S., Xia, K. (eds) Protein Cages. Methods in Molecular Biology, vol 2671. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3222-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3222-2_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3221-5

  • Online ISBN: 978-1-0716-3222-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics