Skip to main content

Directed Evolution of the BpsA Carrier Protein Domain for Recognition by Non-cognate 4′-Phosphopantetheinyl Transferases to Enable Inhibitor Screening

  • Protocol
  • First Online:
Non-Ribosomal Peptide Biosynthesis and Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2670))

Abstract

4′-Phosphopantetheinyl transferases (PPTases) play an essential role in activating the carrier protein domains of mega-synthases involved in primary and secondary metabolism and have been validated as promising drug targets in multiple pathogens. Monitoring phosphopantetheinylation of the non-ribosomal peptidase synthetase BpsA, which produces blue indigoidine pigment upon activation, is a useful strategy to screen chemical collections for inhibitors of a target PPTase. However, PPTases can exhibit carrier protein specificity and some medically important PPTases do not activate BpsA. Here, we describe how to conduct a directed evolution campaign to evolve the BpsA carrier protein domain for improved recognition by a candidate PPTase, as exemplified for the human Sfp-like PPTase. This method can be applied to other non-cognate PPTases for discovery of new drug candidates or chemical probes, or to enable development of next-generation biosensors that utilize BpsA as a reporter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Lambalot RH, Gehring AM, Flugel RS et al (1996) A new enzyme superfamily—the phosphopantetheinyl transferases. Chem Biol 3:923–936

    Article  CAS  PubMed  Google Scholar 

  2. Beld J, Sonnenschein EC, Vickery CR et al (2014) The phosphopantetheinyl transferases: catalysis of a posttranslational modification crucial for life. Nat Prod Rep 31:61–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gehring AM, Lambalot RH, Vogel KW et al (1997) Ability of Streptomyces spp. aryl carrier proteins and coenzyme A analogs to serve as substrates in vitro for E. coli holo-ACP synthase. Chem Biol 4:17–24

    Article  CAS  PubMed  Google Scholar 

  4. Lomakin IB, Xiong Y, Steitz TA (2007) The crystal structure of yeast fatty acid synthase, a cellular machine with eight active sites working together. Cell 129:319–332

    Article  PubMed  Google Scholar 

  5. Leblanc C, Prudhomme T, Tabouret G et al (2012) 4′-Phosphopantetheinyl transferase PptT, a new drug target required for Mycobacterium tuberculosis growth and persistence in vivo. PLoS Pathog 8:e1003097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barekzi N, Joshi S, Irwin S et al (2004) Genetic characterization of pcpS, encoding the multifunctional phosphopantetheinyl transferase of Pseudomonas aeruginosa. Microbiology 150:795–803

    Article  CAS  PubMed  Google Scholar 

  7. Johns A, Scharf DH, Gsaller F et al (2017) A nonredundant phosphopantetheinyl transferase, PptA, Is a novel antifungal target that directs secondary metabolite, siderophore, and lysine biosynthesis in Aspergillus fumigatus and is critical for pathogenicity. MBio 8(4):e01504–e01516

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brown AS, Owen JG, Jung J et al (2021) Inhibition of indigoidine synthesis as a high-throughput colourimetric screen for antibiotics targeting the essential Mycobacterium tuberculosis phosphopantetheinyl transferase PptT. Pharmaceutics 13:1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Owen JG, Copp JN, Ackerley DF (2011) Rapid and flexible biochemical assays for evaluating 4′-phosphopantetheinyl transferase activity. Biochem J 436:709–717

    Article  CAS  PubMed  Google Scholar 

  10. Joshi AK, Zhang L, Rangan VS et al (2003) Cloning, expression, and characterization of a human 4′-phosphopantetheinyl transferase with broad substrate specificity. J Biol Chem 278:33142–33149

    Article  CAS  PubMed  Google Scholar 

  11. Brown AS, Sissons JA, Owen JG et al (2020) Directed evolution of the nonribosomal peptide synthetase BpsA to enable recognition by the human phosphopantetheinyl transferase for counter-screening antibiotic candidates. ACS Infect Dis 6:2879–2886

    Article  CAS  PubMed  Google Scholar 

  12. Weber T, Baumgartner R, Renner C et al (2000) Solution structure of PCP, a prototype for the peptidyl carrier domains of modular peptide synthetases. Structure 8:407–418

    Article  CAS  PubMed  Google Scholar 

  13. Tufar P, Rahighi S, Kraas FI et al (2014) Crystal structure of a PCP/Sfp complex reveals the structural basis for carrier protein posttranslational modification. Chem Biol 21:552–562

    Article  CAS  PubMed  Google Scholar 

  14. Owen JG, Robins KJ, Parachin NS et al (2012) A functional screen for recovery of 4′-phosphopantetheinyl transferase and associated natural product biosynthesis genes from metagenome libraries. Environ Microbiol 14:1198–1209

    Article  CAS  PubMed  Google Scholar 

  15. Wilson DS, Keefe AD (2000) Random mutagenesis by PCR. Curr Protoc Mol Biol 51:8.3.1–8.3.9

    Google Scholar 

  16. Beer R, Herbst K, Ignatiadis N et al (2014) Creating functional engineered variants of the single-module non-ribosomal peptide synthetase IndC by T domain exchange. Mol BioSyst 10:1709–1718

    Article  CAS  PubMed  Google Scholar 

  17. Myers JA, Curtis BS, Curtis WR (2013) Improving accuracy of cell and chromophore concentration measurements using optical density. BMC Biophys 6:4

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rottier K, Faille A, Prudhomme T et al (2013) Detection of soluble co-factor dependent protein expression in vivo: application to the 4′-phosphopantetheinyl transferase PptT from Mycobacterium tuberculosis. J Struct Biol 183:320–328

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David F. Ackerley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brown, A.S., Owen, J.G., Ackerley, D.F. (2023). Directed Evolution of the BpsA Carrier Protein Domain for Recognition by Non-cognate 4′-Phosphopantetheinyl Transferases to Enable Inhibitor Screening. In: Burkart, M., Ishikawa, F. (eds) Non-Ribosomal Peptide Biosynthesis and Engineering. Methods in Molecular Biology, vol 2670. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3214-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3214-7_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3213-0

  • Online ISBN: 978-1-0716-3214-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics