Skip to main content

Integration of Metabolomic and Proteomic Data to Uncover Actionable Metabolic Pathways

  • Protocol
  • First Online:
Cancer Systems and Integrative Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2660))

Abstract

Mass spectrometry (MS) is an important tool for biological studies because it is capable of interrogating a diversity of biomolecules (proteins, drugs, metabolites) not captured via alternate genomic platforms. Unfortunately, downstream data analysis becomes complicated when attempting to evaluate and integrate measurements of different molecular classes and requires the aggregation of expertise from different relevant disciplines. This complexity represents a significant bottleneck that limits the routine deployment of MS-based multi-omic methods, despite the unmatched biological and functional insight the data can provide. To address this unmet need, our group introduced Omics Notebook as an open-source framework for facilitating exploratory analysis, reporting and integrating MS-based multi-omic data in a way that is automated, reproducible and customizable. By deploying this pipeline, we have devised a framework for researchers to more rapidly identify functional patterns across complex data types and focus on statistically significant and biologically interesting aspects of their multi-omic profiling experiments. This chapter aims to describe a protocol which leverages our publicly accessible tools to analyze and integrate data from high-throughput proteomics and metabolomics experiments and produce reports that will facilitate more impactful research, cross-institutional collaborations, and wider data dissemination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manzoni C, Kia DA, Vandrovcova J et al (2018) Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief Bioinform 19:286–302

    Article  CAS  PubMed  Google Scholar 

  2. Perez-Riverol Y, Zorin A, Dass G et al (2019) Quantifying the impact of public omics data. Nat Commun 10:3512

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kopczynski D, Sickmann A, Ahrends R (2017) Computational proteomics tools for identification and quality control. J Biotechnol 261:126–130. https://doi.org/10.1016/j.jbiotec.2017.06.1199

    Article  CAS  PubMed  Google Scholar 

  4. Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA (2016) Untargeted metabolomics strategies-challenges and emerging directions. J Am Soc Mass Spectrom 27(12):1897–1905. https://doi.org/10.1007/s13361-016-1469-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Blum BC, Mousavi F, Emili A (2018) Single-platform ‘multi-omic’ profiling: unified mass spectrometry and computational workflows for integrative proteomics–metabolomics analysis. Mol Omics 14(5):307–319

    Article  CAS  PubMed  Google Scholar 

  6. Paczkowska M, Barenboim J, Sintupisut N, Fox NS, Zhu H, Abd-Rabbo D, Mee MW, Boutros PC (2020) Integrative pathway enrichment analysis of multivariate omics data. Nat Commun 11(1):735. https://doi.org/10.1038/s41467-019-13983-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blum BC, Lin W, Lawton ML et al (2022) Multiomic metabolic enrichment network analysis reveals metabolite–protein physical interaction subnetworks altered in cancer. Mol Cell Proteomics 21(1):100189. https://doi.org/10.1016/j.mcpro.2021.100189

    Article  CAS  PubMed  Google Scholar 

  8. Leprevost Fda V, Barbosa VC, Francisco EL et al (2014) On best practices in the development of bioinformatics software. Front Genet 5:199

    PubMed  Google Scholar 

  9. Reznik E, Luna A, Aksoy BA et al (2018) A landscape of metabolic variation across tumor types. Cell Syst 6:301–313.e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boettiger C, Eddelbuettel D (2017) An introduction to rocker: Docker Containers for R. R J 9:527–536. https://doi.org/10.32614/RJ-2017-065

    Article  Google Scholar 

  11. Decan A, Mens T, Claes M, Grosjean P (2016) When GitHub Meets CRAN: an analysis of inter-repository package dependency problems. Paper presented at IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER), vol 1, pp 493–504

    Google Scholar 

  12. Blum BC, Emili A (2021) Omics notebook: robust, reproducible and flexible automated multiomics exploratory analysis and reporting. Bioinform Adv 1(1):vbab024. https://doi.org/10.1093/bioadv/vbab024

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  PubMed  Google Scholar 

  14. Smith CA, Want EJ, O'Maille G et al (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching and identification. Anal Chem 78:779–787

    Article  CAS  PubMed  Google Scholar 

  15. Tyanova S, Cox J (2018) Perseus: a bioinformatics platform for integrative analysis of proteomics data in cancer research. Methods Mol Biol 1711:133–148. https://doi.org/10.1007/978-1-4939-7493-1_7

    Article  CAS  PubMed  Google Scholar 

  16. Choi M, Broudy D, Killeen T et al (2014) MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics 30:2524–2526

    Article  CAS  PubMed  Google Scholar 

  17. Kong AT, Leprevost FV, Avtonomov DM, Mellacheruvu D, Nesvizhskii AI (2017) MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics. Nat Methods 14(5):513–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Casado P, Rodriguez-Prados JC, Cosulich SC et al (2013) Kinase-substrate enrichment analysis provides insights into the heterogeneity of signaling pathway activation in leukemia cells. Sci Signal 6:rs6

    Article  PubMed  Google Scholar 

  19. Ritchie ME, Phipson B, Wu D et al (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen EY, Tan CM, Kou Y et al (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform 14:128

    Article  Google Scholar 

  21. Korotkevich G, Sukhov V, Budin N et al (2021) Fast gene set enrichment analysis. bioRxiv. https://doi.org/10.1101/060012

  22. Reimand J, Isserlin R, Voisin V et al (2019) Pathway enrichment analysis and visualization of omics data using g: profiler, GSEA, Cytoscape and EnrichmentMap. Nat Protoc 14:482–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chong J, Xia J (2018) MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data. Bioinformatics 34:4313–4314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ziemann M, Eren Y, El-Osta A (2016) Gene name errors are widespread in the scientific literature. Genome Biol 17(1):177

    Article  PubMed  PubMed Central  Google Scholar 

  25. Merico D, Isserlin R, Stueker O, Emili A, Bader GD (2010) Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One 5(11):e13984. https://doi.org/10.1371/journal.pone.0013984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Emili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Heckendorf, C., Blum, B.C., Lin, W., Lawton, M.L., Emili, A. (2023). Integration of Metabolomic and Proteomic Data to Uncover Actionable Metabolic Pathways. In: Kasid, U.N., Clarke, R. (eds) Cancer Systems and Integrative Biology. Methods in Molecular Biology, vol 2660. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3163-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3163-8_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3162-1

  • Online ISBN: 978-1-0716-3163-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics