Skip to main content

Specific Detection and Quantification of Major Fusarium spp. Associated with Cereal and Pulse Crops

  • Protocol
  • First Online:
Plant-Pathogen Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2659))

  • 456 Accesses

Abstract

Plant pathogenic Fusarium spp. are widespread and cause important diseases on a wide host range, including economically important cereal and pulse crops. A number of molecular methods have been used to detect, identify, and quantify a long list of plant pathogenic Fusarium spp. In general, these methods are much faster, highly specific, more sensitive, and more accurate than culture-based methods and can be performed and interpreted by personnel with no specialized taxonomical expertise. The accurate isolation and identification of these pathogens is required to effectively manage diseases caused by pathogenic Fusarium spp. In this chapter, we present detailed molecular methods for detection, quantification, and differentiation between many of the Fusarium spp. associated with cereal and pulse crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Munkvold GP (2017) Fusarium species and their associated mycotoxins. In: Moretti A, Susca A (eds) Mycotoxigenic fungi. Methods in molecular biology, vol 1542. Humana Press, New York, pp 51–106

    Chapter  Google Scholar 

  2. Chatterton S, Harding MW, Bowness R et al (2019) Importance and causal agents of root rot on field pea and lentil on the Canadian prairies 2014–2017. Can J Plant Pathol 41:98–114

    Article  CAS  Google Scholar 

  3. Chittem K, Mathew F, Gregoire M et al (2015) Identification and characterization of Fusarium spp. associated with root rots of field pea in North Dakota. Eur J Plant Pathol 143:641–649

    Article  Google Scholar 

  4. Gossen B, Conner R, Chang KF et al (2016) Identifying and managing root rot of pulses on the northern Great Plains. Plant Dis 100:1965–1978

    Article  PubMed  Google Scholar 

  5. Safarieskandari S, Chatterton S, Hall LM (2021) Pathogenicity and host range of Fusarium species associated with pea root rot in Alberta, Canada. Can J Plant Pathol 43:162–171

    Article  CAS  Google Scholar 

  6. Moparthi S, Burrows M, Mgbechi-Ezeri J, Agindotan B (2021) Fusarium spp. associated with root rot of pulse crops and their cross-pathogenicity to cereal crops in Montana. Plant Dis 105:548–557

    Article  CAS  PubMed  Google Scholar 

  7. Bai G, Shaner G (2004) management and resistance in wheat and barley to Fusarium head blight. Annu Rev Phytopathol 42:135–161

    Article  CAS  PubMed  Google Scholar 

  8. Hafez M, Gourlie R, Telfer M et al (2021) Diversity of Fusarium spp. associated with wheat node and grain in representative sites across the western Canadian Prairies. Phytopathology 112:1003–1015

    Article  Google Scholar 

  9. Osborne LE, Stein JM (2007) Epidemiology of Fusarium head blight on small-grain cereals. Int J Food Microbiol 119:103–108

    Article  PubMed  Google Scholar 

  10. Aboukhaddour R, Fetch T, McCallum BD et al (2020) Wheat diseases on the prairies: a Canadian story. Plant Pathol 69:418–432

    Article  Google Scholar 

  11. Aoki T, O’Donnell K, Geiser DM (2014) Systematics of key phytopathogenic Fusarium species: current status and future challenges. J Gen Plant Pathol 80:189–201

    Article  CAS  Google Scholar 

  12. Scherm B, Balmas V, Spanu F et al (2013) Fusarium culmorum: causal agent of foot and root rot and head blight on wheat. Mol Plant Pathol 14:323–341

    Article  CAS  PubMed  Google Scholar 

  13. Zeilinger S, Gupta VK, Dahms TE et al (2016) Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbil Rev 40:182–207

    Article  CAS  Google Scholar 

  14. Karim NFA, Mohd M, Nor NMIM, Zakaria L (2016) Saprophytic and potentially pathogenic Fusarium species from peat soil in Perak and Pahang. Trop Life Sci Res 27:1

    PubMed  PubMed Central  Google Scholar 

  15. Edel V, Steinberg C, Gautheron N, Alabouvette CJMR (1997) Evaluation of restriction analysis of polymerase chain reaction (PCR)-amplified ribosomal DNA for the identification of Fusarium species. Mycol Res 101:179–187

    Article  CAS  Google Scholar 

  16. Kashyap PL, Rai S, Kumar S et al (2015) Mating type genes and genetic markers to decipher intraspecific variability among Fusarium udum isolates from pigeonpea. J Basic Microbiol 55:846–856

    Article  CAS  PubMed  Google Scholar 

  17. Mach RL, Kullnig-Gradinger CM, Farnleitner et al (2004) Specific detection of Fusarium langsethiae and related species by DGGE and ARMS-PCR of a β-tubulin (tub1) gene fragment. Int J Food Microbiol 95:333–339

    Article  CAS  PubMed  Google Scholar 

  18. O’Donnell K, Rooney AP, Proctor RH et al (2013) Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Genet Biol 52:20–31

    Article  PubMed  Google Scholar 

  19. Geiser DM, del Mar J-GM, Kang S et al (2004) FUSARIUM-ID v. 1.0: a DNA sequence database for identifying Fusarium. Eur J Plant Pathol 110:473–479

    Article  CAS  Google Scholar 

  20. Hafez M, Abdelmagid A, Adam LR, Daayf F (2020) Specific detection and identification of Fusarium graminearum Sensu Stricto using a PCR-RFLP tool and specific primers targeting the translational elongation factor 1α gene. Plant Dis 104:1076–1086

    Article  CAS  PubMed  Google Scholar 

  21. O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci U S A 95:2044–2049

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zitnick-Anderson K, Simons K, Pasche JS (2018) Detection and qPCR quantification of seven Fusarium species associated with the root rot complex in field pea. Can J Plant Pathol 40:261–271

    Article  CAS  Google Scholar 

  23. Parry DW, Nicholson P (1996) Development of a PCR assay to detect Fusarium poae in wheat. Plant Pathol 45:383–391

    Article  CAS  Google Scholar 

  24. Nicolaisen M, Supronienė S, Nielsen LK et al (2009) Real-time PCR for quantification of eleven individual Fusarium species in cereals. J Microbiol Methods 76:234–240

    Article  CAS  PubMed  Google Scholar 

  25. Kachuei R, Yadegari MH, Safaie N et al (2015) PCR-RFLP patterns for the differentiation of the Fusarium species in virtue of ITS rDNA. Curr Med Mycol 1:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. O’Donnell K, Whitaker B, Laraba I et al (2022) DNA sequence-based identification of Fusarium: a work in progress. Plant Dis 106:1597–1609

    Article  PubMed  Google Scholar 

  27. Torres-Cruz T, Whitaker B, Proctor R et al (2022) FUSARIUM-ID v.3.0: an updated, downloadable resource for Fusarium species identification. Plant Dis 106:610–1616

    Article  Google Scholar 

  28. Schoch CL, Seifert KA, Huhndorf S et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 109:6241–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. O’Donnell K, Sutton DA, Rinaldi MG et al (2010) Internet-Accessible DNA sequence database for identifying fusaria from human and animal infections. J Clin Microbiol 48:3708–3718

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nicholson P, Simpson DR, Weston G et al (1998) Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiol Mol Plant Pathol 53:17–37

    Article  CAS  Google Scholar 

  31. Schilling AG, Moller EM, Geiger HH (1996) Polymerase chain reaction-based assays for species-specific detection of Fusarium culmorum, F. graminearum, and F. avenaceum. Phytopathology 86:515–522

    Article  CAS  Google Scholar 

  32. Mishra PK, Fox RT, Culham A (2003) Development of a PCR-based assay for rapid and reliable identification of pathogenic Fusaria. FEMS Microbiol Lett 218:329–332

    Article  CAS  PubMed  Google Scholar 

  33. Yoder WT, Christianson LM (1997) RAPD-derived primers for distinguishing members of the section Fusarium. Cereal Res Commun 25:571–575

    Article  CAS  Google Scholar 

  34. Demeke T, Clear RM, Patrick SK, Gaba D (2005) Species-specific PCR-based assays for the detection of Fusarium species and a comparison with the whole seed agar plate method and trichothecene analysis. Int J Food Microbiol 103:271–284

    Article  CAS  PubMed  Google Scholar 

  35. Wilson A, Simpson D, Chandler E et al (2004) Development of PCR assays for the detection and differentiation of Fusarium sporotrichioides and Fusarium langsethiae. FEMS Microbiol Lett 233:69–76

    Article  CAS  PubMed  Google Scholar 

  36. Bogale M, Wingfield BD, Wingfield MJ, Steenkamp ET (2007) Species-specific primers for Fusarium redolens and a PCR-RFLP technique to distinguish among three clades of Fusarium oxysporum. FEMS Microbiol Lett 271:27–32

    Article  CAS  PubMed  Google Scholar 

  37. Arif M, Chawla S, Zaidi MW et al (2012) Development of specific primers for genus Fusarium and F. solani using rDNA sub-unit and transcription elongation factor (TEF-1α) gene. Afr J Biotechnol 11:444–447

    CAS  Google Scholar 

  38. Aoki T, O’Donnell K (1999) Morphological and molecular characterization of Fusarium pseudograminearum sp. nov., formerly recognized as the Group 1 population of F. graminearum. Mycologia 91:597–609

    Article  Google Scholar 

  39. Hafez M, Abdelmagid A, Aboukhaddour R et al (2021) Fusarium root rot complex in soybean: molecular characterization, trichothecene formation, and cross-pathogenicity. Phytopathology 111:2287–2302

    Article  CAS  PubMed  Google Scholar 

  40. Appel DJ, Gordon TR (1995) Intraspecific variation within populations of Fusarium oxysporum based on RFLP analysis of the intergenic spacer region of the rDNA. Exp Mycol 19:120–128

    Article  CAS  PubMed  Google Scholar 

  41. Dubey SC, Tripathi A, Singh SR (2010) ITS-RFLP fingerprinting and molecular marker for detection of Fusarium oxysporum f. sp. ciceris. Folia Microbiol 55:629–634

    Article  CAS  Google Scholar 

  42. Fernández-Ortuño D, Atkins SL, Fraaije BA (2011) The use of a CYP51C gene based PCR-RFLP assay for simultaneous detection and identification of Fusarium avenaceum and F. tricinctum in wheat. Int J Food Microbiol 145:370–374

    Article  PubMed  Google Scholar 

  43. Garmendia G, Umpierrez-Failache M, Ward TJ, Vero S (2018) Development of a PCR-RFLP method based on the transcription elongation factor 1-α gene to differentiate Fusarium graminearum from other species within the Fusarium graminearum species complex. Food Microbiol 70:28–32

    Article  CAS  PubMed  Google Scholar 

  44. Kim JS, Kang NJ, Kwak YS, Lee C (2017) Investigation of genetic diversity of Fusarium oxysporum f. sp. fragariae using PCR-RFLP. Plant Pathol J 33:140–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Konstantinova P, Yli-Mattila T (2004) IGS–RFLP analysis and development of molecular markers for identification of Fusarium poae, Fusarium langsethiae, Fusarium sporotrichioides and Fusarium kyushuense. Int J Food Microbiol 95:321–331

    Article  CAS  PubMed  Google Scholar 

  46. Llorens A, Hinojo MJ, Mateo R et al (2006) Characterization of Fusarium spp. isolates by PCR-RFLP analysis of the intergenic spacer region of the rRNA gene (rDNA). Int J Food Microbiol 106:297–306

    Article  CAS  PubMed  Google Scholar 

  47. Nosratabadi M, Kachuei R, Rezaie S et al (2018) Beta-tubulin gene in the differentiation of Fusarium species by PCR-RFLP analysis. Infez Med 26:52–60

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Hafez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 His Majesty the King in Right of Canada, as represented by the Minister of Agriculture and Agri-Food

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hafez, M., Telfer, M., Chatterton, S., Aboukhaddour, R. (2023). Specific Detection and Quantification of Major Fusarium spp. Associated with Cereal and Pulse Crops. In: Foroud, N.A., Neilson, J.A.D. (eds) Plant-Pathogen Interactions. Methods in Molecular Biology, vol 2659. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3159-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3159-1_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3158-4

  • Online ISBN: 978-1-0716-3159-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics