Skip to main content

Qualitative and Quantitative Characterization of Protein–Carbohydrate Interactions by NMR Spectroscopy

  • Protocol
  • First Online:
Carbohydrate-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2657))

Abstract

Solution-state nuclear magnetic resonance (NMR) spectroscopy can be used to monitor protein–carbohydrate interactions. Two-dimensional 1H-15N heteronuclear single quantum coherence (HSQC)-based techniques described in this chapter can be used quickly and effectively to screen a set of possible carbohydrate-binding partners, to quantify the dissociation constant (Kd) of any identified interactions, and to the map the carbohydrate-binding site on the structure of a protein. Here, we describe the titration of a family 32 carbohydrate-binding module from Clostridium perfringens (CpCBM32) with the monosaccharide N-acetylgalactosamine (GalNAc), in which we calculate the apparent dissociation of the interaction and map the GalNAc binding site onto the structure of CpCBM32. This approach can be applied to other CBM– and protein–ligand systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cala O, Guilliere F, Krimm I (2014) NMR-based analysis of protein-ligand interactions. Anal Bioanal Chem 406:943–956

    Article  CAS  PubMed  Google Scholar 

  2. Haselhorst T, Lamerz AC, Itzstein M (2009) Saturation transfer difference NMR spectroscopy as a technique to investigate protein-carbohydrate interactions in solution. Methods Mol Biol 534:375–386

    CAS  PubMed  Google Scholar 

  3. Johnson MA, Pinto BM (2004) NMR spectroscopic and molecular modeling studies of protein-carbohydrate and protein-peptide interactions. Carbohydr Res 339:907–928

    Article  CAS  PubMed  Google Scholar 

  4. Nieto PM (2018) The use of NMR to study transient carbohydrate-protein interactions. Front Mol Biosci 5:1–7

    Article  Google Scholar 

  5. Zuiderweg ER (2002) Mapping protein-protein interactions in solution by NMR spectroscopy. Biochemistry 41:1–7

    Article  CAS  PubMed  Google Scholar 

  6. Kay LE, Keifer P, Saarinen T (1992) Pure absorption gradient enhanced. J Am Chem Soc 114:10663–10665

    Article  CAS  Google Scholar 

  7. Lian LY, Barsukov IL, Sutcliffe MJ, Sze KH, Roberts GC (1994) Protein-ligand interactions: exchange processes and determination of ligand conformation and protein-ligand contacts. Methods Enzymol 239:657–700

    Article  CAS  PubMed  Google Scholar 

  8. Johnson BA (2018) From raw data to protein backbone chemical shifts using NMRFx processing and NMRViewJ analysis. Methods Mol Biol 1688:257–310

    Article  CAS  PubMed  Google Scholar 

  9. Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696

    Article  CAS  PubMed  Google Scholar 

  10. Skinner SP, Fogh RH, Boucher W, Ragan TJ, Mureddu LG, Vuister GW (2016) CcpNmr AnalysisAssign: a flexible platform for integrated NMR analysis. J Biomol NMR 66:111–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grondin JM, Chitayat S, Ficko-Blean E, Houliston S, Arrowsmith CH, Boraston AB, Smith SP (2014) An unusual mode of galactose recognition by a family 32 carbohydrate-binding module. J Mol Biol 426:869–880

    Article  CAS  PubMed  Google Scholar 

  12. Grondin JM, Duan D, Kirlin AC, Abe KT, Chitayat S, Spencer HL, Spencer C, Campigotto A, Houliston S, Arrowsmith CH, Allingham JS, Boraston AB, Smith SP (2017) Diverse modes of galacto-specific carbohydrate recognition by a family 31 glycoside hydrolase from Clostridium perfringens. PLoS One 12:e0171606

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kitaoku Y, Fukamizo T, Numata T, Ohnuma T (2017) Chitin oligosaccharide binding to the lysin motif of a novel type of chitinase from the multicellular green alga, Volvox carteri. Plant Mol Biol 93:97–108

    Article  CAS  PubMed  Google Scholar 

  14. Koay A, Rimmer KA, Mertens HD, Gooley PR, Stapleton D (2007) Oligosaccharide recognition and binding to the carbohydrate binding module of AMP-activated protein kinase. FEBS Lett 581:5055–5059

    Article  CAS  PubMed  Google Scholar 

  15. Ohnuma T, Onaga S, Murata K, Taira T, Katoh E (2008) LysM domains from Pteris ryukyuensis chitinase-A: a stability study and characterization of the chitin-binding site. J Biol Chem 283:5178–5187

    Article  CAS  PubMed  Google Scholar 

  16. Viegas A, Sardinha J, Freire F, Duarte DF, Carvalho AL, Fontes CM, Romao MJ, Macedo AL, Cabrita EJ (2013) Solution structure, dynamics and binding studies of a family 11 carbohydrate-binding module from Clostridium thermocellum (CtCBM11). Biochem J 451:289–300

    Article  CAS  PubMed  Google Scholar 

  17. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Boraston AB, Ficko-Blean E, Healey M (2007) Carbohydrate recognition by a large sialidase toxin from Clostridium perfringens. Biochemistry 46:11352–11360

    Article  CAS  PubMed  Google Scholar 

  19. Ficko-Blean E, Boraston AB (2006) The interaction of a carbohydrate-binding module from a Clostridium perfringens N-acetyl-beta-hexosaminidase with its carbohydrate receptor. J Biol Chem 281:37748–37757

    Article  CAS  PubMed  Google Scholar 

  20. Ficko-Blean E, Boraston AB (2009) N-acetylglucosamine recognition by a family 32 carbohydrate-binding module from Clostridium perfringens NagH. J Mol Biol 390:208–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ficko-Blean E, Stuart CP, Suits MD, Cid M, Tessier M, Woods RJ, Boraston AB (2012) Carbohydrate recognition by an architecturally complex alpha-N-acetylglucosaminidase from Clostridium perfringens. PLoS One 7:e33524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552

    CAS  PubMed  Google Scholar 

  23. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven P. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Grondin, J.M., Langelaan, D.N., Smith, S.P. (2023). Qualitative and Quantitative Characterization of Protein–Carbohydrate Interactions by NMR Spectroscopy. In: Abbott, D.W., Zandberg, W.F. (eds) Carbohydrate-Protein Interactions. Methods in Molecular Biology, vol 2657. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3151-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3151-5_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3150-8

  • Online ISBN: 978-1-0716-3151-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics