Skip to main content

Primary Cultures of Spermatogonia and Testis Cells

  • Protocol
  • First Online:
Spermatogonial Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2656))

  • 594 Accesses

Abstract

Spermatogonial stem cells (SSCs) maintain adult spermatogenesis in mammals by undergoing self-renewal and differentiation into spermatozoa. In order to study the biology of SSCs as related to spermatogenesis, an in vitro, long-term expansion system of SSCs constitutes an ideal tool. In this chapter, we describe a robust culture system for mouse and rat SSCs in vitro. In the presence of GDNF, GFRα1, and bFGF, SSCs maintained on STO feeder layers with serum-free medium continuously proliferate for over 6 months. Complete spermatogenesis in infertile recipient mice can be attained following transplantation of the cultured mouse and rat SSCs. Using the in vitro SSC culture systems, elucidation of stem cell biology can be advanced that significantly advances our understanding of spermatogenesis and male fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Rooij DG, Russell LD (2000) All you wanted to know about spermatozoon but were afraid to ask. J Androl 21:776–798

    PubMed  Google Scholar 

  2. De Rooij DG, Griswold MD (2012) Questions about spermatogonia posed and answered since 2000. J Androl 33(6):1085–1095. https://doi.org/10.2164/jandrol.112.016832

    Article  CAS  PubMed  Google Scholar 

  3. Brinster RL (2002) Germline stem cell transplantation and transgenesis. Science 296(5576):2174–2176. https://doi.org/10.1126/science.1071607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brinster RL (2007) Male germline stem cells: from mice to men. Science 316(5823):404–405. https://doi.org/10.1126/science.1137741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Oatley JM, Avarbock MR, Telaranta AI, Fearon DT, Brinster RL (2006) Identifying genes important for spermatogonial stem cell self-renewal and survival. Proc Natl Acad Sci U S A 103(25):9524–9529. https://doi.org/10.1073/pnas.0603332103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tegelenbosch RA, de Rooij DG (1993) A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat Res 290(2):193–200. https://doi.org/10.1016/0027-5107(93)90159-d

    Article  CAS  PubMed  Google Scholar 

  7. Kubota H, Brinster RL (2008) Culture of rodent spermatogonial stem cells, male germline stem cells of the postnatal animal. Methods Cell Biol 86:59–84. https://doi.org/10.1016/S0091-679X(08)00004-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nagano M, Ryu BY, Brinster CJ, Avarbock MR, Brinster RL (2003) Maintenance of mouse male germ line stem cells in vitro. Biol Reprod 68(6):2207–2214. https://doi.org/10.1095/biolreprod.102.014050

    Article  CAS  PubMed  Google Scholar 

  9. Shinohara T, Avarbock MR, Brinster RL (1999) beta1- and alpha6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 96(10):5504–5509. https://doi.org/10.1073/pnas.96.10.5504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shinohara T, Orwig KE, Avarbock MR, Brinster RL (2000) Spermatogonial stem cell enrichment by multiparameter selection of mouse testis cells. Proc Natl Acad Sci U S A 97(15):8346–8351. https://doi.org/10.1073/pnas.97.15.8346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kubota H, Avarbock MR, Brinster RL (2004) Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol Reprod 71(3):722–731. https://doi.org/10.1095/biolreprod.104.029207

    Article  CAS  PubMed  Google Scholar 

  12. Shinohara T, Avarbock MR, Brinster RL (2000) Functional analysis of spermatogonial stem cells in steel and cryptorchid infertile mouse models. Dev Biol 220(2):401–411. https://doi.org/10.1006/dbio.2000.9655

    Article  CAS  PubMed  Google Scholar 

  13. Kubota H, Avarbock MR, Brinster RL (2003) Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Natl Acad Sci U S A 100(11):6487–6492. https://doi.org/10.1073/pnas.0631767100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ryu BY, Kubota H, Avarbock MR, Brinster RL (2005) Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat. Proc Natl Acad Sci U S A 102(40):14302–14307. https://doi.org/10.1073/pnas.0506970102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nagano M, Avarbock MR, Leonida EB, Brinster CJ, Brinster RL (1998) Culture of mouse spermatogonial stem cells. Tissue Cell 30(4):389–397. https://doi.org/10.1016/s0040-8166(98)80053-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S, Shinohara T (2003) Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod 69(2):612–616. https://doi.org/10.1095/biolreprod.103.017012

    Article  CAS  PubMed  Google Scholar 

  17. Wei X, Jia Y, Xue Y, Geng L, Wang M, Li L, Wang M, Zhang X, Wu X (2016) GDNF-expressing STO feeder layer supports the long-term propagation of undifferentiated mouse spermatogonia with stem cell properties. Sci Rep 6:36779. https://doi.org/10.1038/srep36779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guo Y, Hai Y, Gong Y, Li Z, He Z (2014) Characterization, isolation, and culture of mouse and human spermatogonial stem cells. J Cell Physiol 229(4):407–413. https://doi.org/10.1002/jcp.24471

    Article  CAS  PubMed  Google Scholar 

  19. Li CH, Yan LZ, Ban WZ, Tu Q, Wu Y, Wang L, Bi R, Ji S, Ma YH, Nie WH, Lv LB, Yao YG, Zhao XD, Zheng P (2017) Long-term propagation of tree shrew spermatogonial stem cells in culture and successful generation of transgenic offspring. Cell Res 27(2):241–252. https://doi.org/10.1038/cr.2016.156

    Article  CAS  PubMed  Google Scholar 

  20. Hamra FK, Chapman KM, Nguyen DM, Williams-Stephens AA, Hammer RE, Garbers DL (2005) Self renewal, expansion, and transfection of rat spermatogonial stem cells in culture. Proc Natl Acad Sci U S A 102(48):17430–17435. https://doi.org/10.1073/pnas.0508780102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kanatsu-Shinohara M, Miki H, Inoue K, Ogonuki N, Toyokuni S, Ogura A, Shinohara T (2005) Long-term culture of mouse male germline stem cells under serum-or feeder-free conditions. Biol Reprod 72(4):985–991. https://doi.org/10.1095/biolreprod.104.036400

    Article  CAS  PubMed  Google Scholar 

  22. Kubota H, Avarbock MR, Brinster RL (2004) Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 101(47):16489–16494. https://doi.org/10.1073/pnas.0407063101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kanatsu-Shinohara M, Inoue K, Lee J, Miki H, Ogonuki N, Toyokuni S, Ogura A, Shinohara T (2006) Anchorage-independent growth of mouse male germline stem cells in vitro. Biol Reprod 74(3):522–529. https://doi.org/10.1095/biolreprod.105.046441

    Article  CAS  PubMed  Google Scholar 

  24. Kanatsu-Shinohara M, Inoue K, Ogonuki N, Morimoto H, Ogura A, Shinohara T (2011) Serum- and feeder-free culture of mouse germline stem cells. Biol Reprod 84(1):97–105. https://doi.org/10.1095/biolreprod.110.086462

    Article  CAS  PubMed  Google Scholar 

  25. Kanatsu-Shinohara M, Ogonuki N, Matoba S, Morimoto H, Ogura A, Shinohara T (2014) Improved serum- and feeder-free culture of mouse germline stem cells. Biol Reprod 91(4):88. https://doi.org/10.1095/biolreprod.114.122317

    Article  CAS  PubMed  Google Scholar 

  26. Ishii K, Kanatsu-Shinohara M, Toyokuni S, Shinohara T (2012) FGF2 mediates mouse spermatogonial stem cell self-renewal via upregulation of Etv5 and Bcl6b through MAP2K1 activation. Development 139(10):1734–1743. https://doi.org/10.1242/dev.076539

    Article  CAS  PubMed  Google Scholar 

  27. Aponte PM, Soda T, Teerds KJ, Mizrak SC, van de Kant HJ, de Rooij DG (2008) Propagation of bovine spermatogonial stem cells in vitro. Reproduction 136(5):543–557. https://doi.org/10.1530/REP-07-0419

    Article  CAS  PubMed  Google Scholar 

  28. Sharma A, Shah SM, Saini N, Mehta P, Kumar BSB, Dua D, Singh MK, Singla SK, Palta P, Manik RS, Chauhan MS (2019) Optimization of serum-free culture conditions for propagation of Putative Buffalo (Bubalus bubalis) spermatogonial stem cells. Cell Reprogram 21(1):1–10. https://doi.org/10.1089/cell.2018.0018

    Article  CAS  PubMed  Google Scholar 

  29. Dolci S, Pellegrini M, Di Agostino S, Geremia R, Rossi P (2001) Signaling through extracellular signal-regulated kinase is required for spermatogonial proliferative response to stem cell factor. J Biol Chem 276(43):40225–40233. https://doi.org/10.1074/jbc.M105143200

    Article  CAS  PubMed  Google Scholar 

  30. Oatley JM, Oatley MJ, Avarbock MR, Tobias JW, Brinster RL (2009) Colony stimulating factor 1 is an extrinsic stimulator of mouse spermatogonial stem cell self-renewal. Development 136(7):1191–1199. https://doi.org/10.1242/dev.032243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang YH, Chin CC, Ho HN, Chou CK, Shen CN, Kuo HC, Wu TJ, Wu YC, Hung YC, Chang CC, Ling TY (2009) Pluripotency of mouse spermatogonial stem cells maintained by IGF-1- dependent pathway. FASEB J 23(7):2076–2087. https://doi.org/10.1096/fj.08-121939

    Article  CAS  PubMed  Google Scholar 

  32. Yang F, Whelan EC, Guan X, Deng B, Wang S, Sun J, Avarbock MR, Wu X, Brinster RL (2020) FGF9 promotes mouse spermatogonial stem cell proliferation mediated by p38 MAPK signalling. Cell Prolif 54. https://doi.org/10.1111/cpr.12933

  33. Meng X, Lindahl M, Hyvonen ME, Parvinen M, de Rooij DG, Hess MW, Raatikainen-Ahokas A, Sainio K, Rauvala H, Lakso M, Pichel JG, Westphal H, Saarma M, Sariola H (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287(5457):1489–1493. https://doi.org/10.1126/science.287.5457.1489

    Article  CAS  PubMed  Google Scholar 

  34. Takashima S, Kanatsu-Shinohara M, Tanaka T, Morimoto H, Inoue K, Ogonuki N, Jijiwa M, Takahashi M, Ogura A, Shinohara T (2015) Functional differences between GDNF-dependent and FGF2-dependent mouse spermatogonial stem cell self-renewal. Stem Cell Reports 4(3):489–502. https://doi.org/10.1016/j.stemcr.2015.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kubota H, Wu X, Goodyear SM, Avarbock MR, Brinster RL (2011) Glial cell line-derived neurotrophic factor and endothelial cells promote self-renewal of rabbit germ cells with spermatogonial stem cell properties. FASEB J 25(8):2604–2614. https://doi.org/10.1096/fj.10-175802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kanatsu-Shinohara M, Muneto T, Lee J, Takenaka M, Chuma S, Nakatsuji N, Horiuchi T, Shinohara T (2008) Long-term culture of male germline stem cells from hamster testes. Biol Reprod 78(4):611–617. https://doi.org/10.1095/biolreprod.107.065615

    Article  CAS  PubMed  Google Scholar 

  37. Kuijk EW, Colenbrander B, Roelen BA (2009) The effects of growth factors on in vitro-cultured porcine testicular cells. Reproduction 138(4):721–731. https://doi.org/10.1530/REP-09-0138

    Article  CAS  PubMed  Google Scholar 

  38. Zhu H, Liu C, Li M, Sun J, Song W, Hua J (2013) Optimization of the conditions of isolation and culture of dairy goat male germline stem cells (mGSC). Anim Reprod Sci 137(1–2):45–52. https://doi.org/10.1016/j.anireprosci.2012.12.005

    Article  CAS  PubMed  Google Scholar 

  39. Kadam PH, Kala S, Agrawal H, Singh KP, Singh MK, Chauhan MS, Palta P, Singla SK, Manik RS (2013) Effects of glial cell line-derived neurotrophic factor, fibroblast growth factor 2 and epidermal growth factor on proliferation and the expression of some genes in buffalo (Bubalus bubalis) spermatogonial cells. Reprod Fertil Dev 25(8):1149–1157. https://doi.org/10.1071/RD12330

    Article  CAS  PubMed  Google Scholar 

  40. Zheng Y, Tian X, Zhang Y, Qin J, An J, Zeng W (2013) In vitro propagation of male germline stem cells from piglets. J Assist Reprod Genet 30(7):945–952. https://doi.org/10.1007/s10815-013-0031-0

    Article  PubMed  PubMed Central  Google Scholar 

  41. Oatley MJ, Kaucher AV, Yang QE, Waqas MS, Oatley JM (2016) Conditions for long-term culture of cattle undifferentiated spermatogonia. Biol Reprod 95(1):14. https://doi.org/10.1095/biolreprod.116.139832

    Article  CAS  PubMed  Google Scholar 

  42. Sadri-Ardekani H, Mizrak SC, van Daalen SK, Korver CM, Roepers-Gajadien HL, Koruji M, Hovingh S, de Reijke TM, de la Rosette JJ, van der Veen F, de Rooij DG, Repping S, van Pelt AM (2009) Propagation of human spermatogonial stem cells in vitro. JAMA 302(19):2127–2134. https://doi.org/10.1001/jama.2009.1689

    Article  CAS  PubMed  Google Scholar 

  43. He Z, Kokkinaki M, Jiang J, Dobrinski I, Dym M (2010) Isolation, characterization, and culture of human spermatogonia. Biol Reprod 82(2):363–372. https://doi.org/10.1095/biolreprod.109.078550

    Article  CAS  PubMed  Google Scholar 

  44. Kokkinaki M, Djourabtchi A, Golestaneh N (2011) Long-term culture of human SSEA-4 positive Spermatogonial Stem Cells (SSCs). J Stem Cell Res Ther 2(2). https://doi.org/10.4172/2157-7633.S2-003

  45. Sadri-Ardekani H, Akhondi MA, van der Veen F, Repping S, van Pelt AM (2011) In vitro propagation of human prepubertal spermatogonial stem cells. JAMA 305(23):2416–2418. https://doi.org/10.1001/jama.2011.791

    Article  CAS  PubMed  Google Scholar 

  46. Hou JM, Niu MH, Liu LH, Zhu ZJ, Wang XB, Sun M, Yuan QQ, Yang S, Zeng WX, Liu Y, Li Z, He ZP (2015) Establishment and characterization of human germline stem cell line with unlimited proliferation potentials and no tumor formation. Sci Rep-Uk 5. doi:ARTN 16922. https://doi.org/10.1038/srep16922

  47. Kossack N, Terwort N, Wistuba J, Ehmcke J, Schlatt S, Scholer H, Kliesch S, Gromoll J (2013) A combined approach facilitates the reliable detection of human spermatogonia in vitro. Hum Reprod 28(11):3012–3025. https://doi.org/10.1093/humrep/det336

    Article  CAS  PubMed  Google Scholar 

  48. Langenstroth D, Kossack N, Westernstroer B, Wistuba J, Behr R, Gromoll J, Schlatt S (2014) Separation of somatic and germ cells is required to establish primate spermatogonial cultures. Hum Reprod 29(9):2018–2031. https://doi.org/10.1093/humrep/deu157

    Article  PubMed  Google Scholar 

  49. Zheng Y, Thomas A, Schmidt CM, Dann CT (2014) Quantitative detection of human spermatogonia for optimization of spermatogonial stem cell culture. Hum Reprod 29(11):2497–2511. https://doi.org/10.1093/humrep/deu232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Medrano JV, Rombaut C, Simon C, Pellicer A, Goossens E (2016) Human spermatogonial stem cells display limited proliferation in vitro under mouse spermatogonial stem cell culture conditions. Fertil Steril 106(6):1539–1549. e1538. https://doi.org/10.1016/j.fertnstert.2016.07.1065

    Article  CAS  PubMed  Google Scholar 

  51. Li L, Wang M, Wang M, Wu X, Geng L, Xue Y, Wei X, Jia Y, Wu X (2016) A long non-coding RNA interacts with Gfra1 and maintains survival of mouse spermatogonial stem cells. Cell Death Dis 7:e2140. https://doi.org/10.1038/cddis.2016.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang M, Guo Y, Wang M, Zhou T, Xue Y, Du G, Wei X, Wang J, Qi L, Zhang H, Li L, Ye L, Guo X, Wu X (2017) The glial cell-derived neurotrophic factor (GDNF)-responsive phosphoprotein landscape identifies raptor phosphorylation required for Spermatogonial progenitor cell proliferation. Mol Cell Proteomics 16(6):982–997. https://doi.org/10.1074/mcp.M116.065797

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang M, Yu L, Wang S, Yang F, Wang M, Li L, Wu X (2020) LIN28A binds to meiotic gene transcripts and modulates their translation in male germ cells. J Cell Sci 133(12). https://doi.org/10.1242/jcs.242701

  54. Du G, Wang X, Luo M, Xu W, Zhou T, Wang M, Yu L, Li L, Cai L, Wang PJ, Zhong Li J, Oatley JM, Wu X (2020) mRBPome capture identifies the RNA-binding protein TRIM71, an essential regulator of spermatogonial differentiation. Development 147(8). https://doi.org/10.1242/dev.184655

  55. Kubota H, Avarbock MR, Schmidt JA, Brinster RL (2009) Spermatogonial stem cells derived from infertile Wv/Wv mice self-renew in vitro and generate progeny following transplantation. Biol Reprod 81(2):293–301. https://doi.org/10.1095/biolreprod.109.075960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Helsel AR, Oatley MJ, Oatley JM (2017) Glycolysis-optimized conditions enhance maintenance of regenerative integrity in mouse Spermatogonial stem cells during long-term culture. Stem Cell Reports 8(5):1430–1441. https://doi.org/10.1016/j.stemcr.2017.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ralph Brinster and Dr. Eoin Whelan for helpful advice. This work was supported by the National Key R&D Program of China (Grant No. 2018YFC1003302) and the National Natural Science Foundation of China (Grant No. 31872844 and 32070831).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yang, F., Sun, J., Wu, X. (2023). Primary Cultures of Spermatogonia and Testis Cells. In: M. Oatley, J., Hermann, B.P. (eds) Spermatogonial Stem Cells. Methods in Molecular Biology, vol 2656. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3139-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3139-3_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3138-6

  • Online ISBN: 978-1-0716-3139-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics