Skip to main content

Imaging CAR-T Synapse as a Quality Control for CAR Engineering

  • Protocol
  • First Online:
The Immune Synapse

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2654))

Abstract

The chimeric antigen receptor (CAR) evolves as a powerful tool to reprogram T cells for targeted killing. CAR-T therapy succeeded in treating certain types of blood cancers, and its application is now expanding towards solid tumors, autoimmune diseases, viral infection, and fibrosis. These require the design of a large number of new CARs that target a variety of antigens. Here we described two methods as a quality control for validating newly developed CARs: (1) the cell-cell conjugation assay as a reflection of efficient binding of CAR to antigen in the cellular context and (2) CD45 exclusion in the synapse as an indication of CAR signaling potential. These assays examine prerequisites for a functional CAR-T and reveal causes for ineffective CAR-T activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. June CH, Sadelain M (2018) Chimeric antigen receptor therapy. N Engl J Med 379(1):64–73. https://doi.org/10.1056/NEJMra1706169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weber EW, Maus MV, Mackall CL (2020) The emerging landscape of immune cell therapies. Cell 181(1):46–62. https://doi.org/10.1016/j.cell.2020.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Leibman RS, Richardson MW, Ellebrecht CT, Maldini CR, Glover JA, Secreto AJ, Kulikovskaya I, Lacey SF, Akkina SR, Yi Y, Shaheen F, Wang J, Dufendach KA, Holmes MC, Collman RG, Payne AS, Riley JL (2017) Supraphysiologic control over HIV-1 replication mediated by CD8 T cells expressing a re-engineered CD4-based chimeric antigen receptor. PLoS Pathog 13(10):e1006613. https://doi.org/10.1371/journal.ppat.1006613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hale M, Mesojednik T, Romano Ibarra GS, Sahni J, Bernard A, Sommer K, Scharenberg AM, Rawlings DJ, Wagner TA (2017) Engineering HIV-resistant, anti-HIV chimeric antigen receptor T cells. Mol Ther 25(3):570–579. https://doi.org/10.1016/j.ymthe.2016.12.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ellebrecht CT, Bhoj VG, Nace A, Choi EJ, Mao X, Cho MJ, Di Zenzo G, Lanzavecchia A, Seykora JT, Cotsarelis G, Milone MC, Payne AS (2016) Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 353(6295):179–184. https://doi.org/10.1126/science.aaf6756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Elinav E, Waks T, Eshhar Z (2008) Redirection of regulatory T cells with predetermined specificity for the treatment of experimental colitis in mice. Gastroenterology 134(7):2014–2024. https://doi.org/10.1053/j.gastro.2008.02.060

    Article  PubMed  Google Scholar 

  7. Aghajanian H, Kimura T, Rurik JG, Hancock AS, Leibowitz MS, Li L, Scholler J, Monslow J, Lo A, Han W, Wang T, Bedi K, Morley MP, Linares Saldana RA, Bolar NA, McDaid K, Assenmacher CA, Smith CL, Wirth D, June CH, Margulies KB, Jain R, Pure E, Albelda SM, Epstein JA (2019) Targeting cardiac fibrosis with engineered T cells. Nature 573(7774):430–433. https://doi.org/10.1038/s41586-019-1546-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Majzner RG, Rietberg SP, Sotillo E, Dong R, Vachharajani VT, Labanieh L, Myklebust JH, Kadapakkam M, Weber EW, Tousley AM, Richards RM, Heitzeneder S, Nguyen SM, Wiebking V, Theruvath J, Lynn RC, Xu P, Dunn AR, Vale RD, Mackall CL (2020) Tuning the antigen density requirement for CAR T cell activity. Cancer Discov 10:702. https://doi.org/10.1158/2159-8290.CD-19-0945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dustin ML (2009) Modular design of immunological synapses and kinapses. Cold Spring Harb Perspect Biol 1(1):a002873. https://doi.org/10.1101/cshperspect.a002873

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dustin ML (2014) The immunological synapse. Cancer Immunol Res 2(11):1023–1033. https://doi.org/10.1158/2326-6066.CIR-14-0161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mukherjee M, Mace EM, Carisey AF, Ahmed N, Orange JS (2017) Quantitative imaging approaches to study the CAR immunological synapse. Mol Ther 25(8):1757–1768. https://doi.org/10.1016/j.ymthe.2017.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Davenport AJ, Cross RS, Watson KA, Liao Y, Shi W, Prince HM, Beavis PA, Trapani JA, Kershaw MH, Ritchie DS, Darcy PK, Neeson PJ, Jenkins MR (2018) Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity. Proc Natl Acad Sci U S A 115(9):E2068–E2076. https://doi.org/10.1073/pnas.1716266115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dong R, Libby KA, Blaeschke F, Fuchs W, Marson A, Vale RD, Su X (2020) Rewired signaling network in T cells expressing the chimeric antigen receptor (CAR). EMBO J 39(16):e104730. https://doi.org/10.15252/embj.2020104730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu D, Badeti S, Dotti G, Jiang JG, Wang H, Dermody J, Soteropoulos P, Streck D, Birge RB, Liu C (2020) The role of immunological synapse in predicting the efficacy of chimeric antigen receptor (CAR) immunotherapy. Cell Commun Signal 18(1):134. https://doi.org/10.1186/s12964-020-00617-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xiao Q (in press) Science immunology. PMID: 35930653. https://doi.org/10.1126/sciimmunol.abl3995

  16. Libby KA, Su X (2020) Imaging chimeric antigen receptor (CAR) activation. Methods Mol Biol 2111:153–160. https://doi.org/10.1007/978-1-0716-0266-9_13

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolei Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Xiao, Q., Su, X. (2023). Imaging CAR-T Synapse as a Quality Control for CAR Engineering. In: Baldari, C.T., Dustin, M.L. (eds) The Immune Synapse. Methods in Molecular Biology, vol 2654. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3135-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3135-5_33

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3134-8

  • Online ISBN: 978-1-0716-3135-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics