Skip to main content

Type I-D CRISPR System-Mediated Genome Editing in Plants

  • Protocol
  • First Online:
Plant Genome Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2653))

  • 988 Accesses

Abstract

Genome editing has revolutionized plant research and plant breeding by enabling precise genome manipulation. In particular, the application of type II CRISPR-Cas9 systems to genome editing has proved an important milestone, accelerating genetic engineering and the analysis of gene function. On the other hand, the potential of other types of CRISPR-Cas systems, especially many of the most abundant type I CRISPR-Cas systems, remains unexplored. We recently developed a novel genome editing tool, TiD, based on the type I-D CRISPR-Cas system. In this chapter, we describe a protocol for genome editing of plant cells using TiD. This protocol allows the application of TiD to induce short insertion and deletions (indels) or long-range deletions at target sites with high specificity in tomato cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Osakabe Y, Osakabe K (2015) Genome editing with engineered nucleases in plants. Plant Cell Physiol 56:389–400

    Article  CAS  PubMed  Google Scholar 

  2. Cathomen T, Keith Joung J (2008) Zinc-finger nucleases: the next generation emerges. Mol Ther 16:1200–1207

    Article  CAS  PubMed  Google Scholar 

  3. Miller JC, Tan S, Qiao G et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    Article  CAS  PubMed  Google Scholar 

  4. Zhang F, Cong L, Lodato S et al (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29:149–153

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang H, La Russa M, Qi LS (2016) CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem 85:227–264

    Article  CAS  PubMed  Google Scholar 

  9. Jaganathan D, Ramasamy K, Sellamuthu G et al (2018) CRISPR for crop improvement: an update review. Front Plant Sci 9:985

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wada N, Ueta R, Osakabe Y et al (2020) Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering. BMC Plant Biol 20:234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pyzocha NK, Chen S (2018) Diverse class 2 CRISPR-Cas effector proteins for genome engineering applications. ACS Chem Biol 13:347–356

    Article  CAS  PubMed  Google Scholar 

  12. Makarova KS, Wolf YI, Iranzo J et al (2020) Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18:67–83

    Article  CAS  PubMed  Google Scholar 

  13. Brouns SJJ, Jore MM, Lundgren M et al (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Westra ER, van Erp PBG, Künne T et al (2012) CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol Cell 46:595–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jackson RN, Golden SM, van Erp PBG et al (2014) Crystal structure of the CRISPR RNA–guided surveillance complex from Escherichia coli. Science 345:1473–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mulepati S, Héroux A, Bailey S (2014) Crystal structure of a CRISPR RNA–guided surveillance complex bound to a ssDNA target. Science 345:1479–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao H, Sheng G, Wang J et al (2014) Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli. Nature 515:147–150

    Article  CAS  PubMed  Google Scholar 

  18. Hayes RP, Xiao Y, Ding F et al (2016) Structural basis for promiscuous PAM recognition in type I–E Cascade from E. coli. Nature 530:499–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xiao Y, Luo M, Hayes RP et al (2017) Structure basis for directional R-loop formation and substrate handover mechanisms in type I CRISPR-Cas system. Cell 170:48–60.e11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xiao Y, Luo M, Dolan AE et al (2018) Structure basis for RNA-guided DNA degradation by Cascade and Cas3. Science 361:eaat0839

    Article  PubMed  PubMed Central  Google Scholar 

  21. Loeff L, Brouns SJJ, Joo C (2018) Repetitive DNA reeling by the Cascade-Cas3 complex in nucleotide unwinding steps. Mol Cell 70:385–394.e3

    Article  CAS  PubMed  Google Scholar 

  22. Wada N, Osakabe K, Osakabe Y (2022) Expanding the plant genome editing toolbox with recently developed CRISPR–Cas systems. Plant Physiol 188:1825–1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cameron P, Coons MM, Klompe SE et al (2019) Harnessing type I CRISPR–Cas systems for genome engineering in human cells. Nat Biotechnol 37:1471–1477

    Article  CAS  PubMed  Google Scholar 

  24. Dolan AE, Hou Z, Xiao Y et al (2019) Introducing a Spectrum of long-range genomic deletions in human embryonic stem cells using type I CRISPR-Cas. Mol Cell 74:936–950.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morisaka H, Yoshimi K, Okuzaki Y et al (2019) CRISPR-Cas3 induces broad and unidirectional genome editing in human cells. Nat Commun 10:5302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tan R, Krueger RK, Gramelspacher MJ et al (2022) Cas11 enables genome engineering in human cells with compact CRISPR-Cas3 systems. Mol Cell 82:852–867.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Osakabe K, Wada N, Murakami E et al (2021) Genome editing in mammalian cells using the CRISPR type I-D nuclease. Nucleic Acids Res 49:6347–6363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Osakabe K, Wada N, Miyaji T et al (2020) Genome editing in plants using CRISPR type I-D nuclease. Commun Biol 3:648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ueta R, Abe C, Watanabe T et al (2017) Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Sci Rep 7:507

    Article  PubMed  PubMed Central  Google Scholar 

  30. Abe-Hara C, Yamada K, Wada N et al (2021) Effects of the sliaa9 mutation on shoot elongation growth of tomato cultivars. Front Plant Sci 12:627832

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work is supported by New Energy and Industrial Technology Development Organization (NEDO) and Japan Science and Technology Agency (JST) grant number JPMJPF2010 (to Y.O.), Adaptable and Seamless Technology transfer Program through Target-driven R&D (A-STEP) (to K.O.), Core Research for Evolutional Science and Technology (CREST) (to K.O.), and JSPS KAKENHI Grant number 22 K06192 (to N.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriko Osakabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wada, N., Osakabe, K., Osakabe, Y. (2023). Type I-D CRISPR System-Mediated Genome Editing in Plants. In: Yang, B., Harwood, W., Que, Q. (eds) Plant Genome Engineering. Methods in Molecular Biology, vol 2653. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3131-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3131-7_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3130-0

  • Online ISBN: 978-1-0716-3131-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics