Skip to main content

Adoption of A–Z Junctions in RNAs by Binding of Zα Domains

  • Protocol
  • First Online:
Z-DNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2651))

Abstract

While DNA and RNA helices often adopt the canonical B- or A-conformation, the fluid conformational landscape of nucleic acids allows for many higher energy states to be sampled. One such state is the Z-conformation of nucleic acids, which is unique in that it is left-handed and has a “zigzag” backbone. The Z-conformation is recognized and stabilized by Z-DNA/RNA binding domains called Zα domains. We recently demonstrated that a wide range of RNAs can adopt partial Z-conformations termed “A–Z junctions” upon binding to Zα and that the formation of such conformations may be dependent upon both sequence and context. In this chapter, we present general protocols for characterizing the binding of Zα domains to A–Z junction-forming RNAs for the purpose of determining the affinity and stoichiometry of interactions as well as the extent and location of Z-RNA formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D’Ascenzo L, Leonarski F, Vicens Q, Auffinger P (2016) ‘Z-DNA like’ fragments in RNA: a recurring structural motif with implications for folding, RNA/protein recognition and immune response. Nucleic Acids Res. https://doi.org/10.1093/nar/gkw388

  2. Harvey SC (1983) DNA structural dynamics: longitudinal breathing as a possible mechanism for the B in equilibrium Z transition. Nucleic Acids Res 11:4867–4878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang AHJ et al (1979) Molecular structure of a left-Handed double helical DNA fragment at atomic resolution. Nature. https://doi.org/10.1038/282680a0

  4. Rich A, Zhang S (2003) Z-DNA: The long road to biological function. Nat Rev Genet. https://doi.org/10.1038/nrg1115

  5. Herbert A (2019) Z-DNA and Z-RNA in human disease. Commun Biol. https://doi.org/10.1038/s42003-018-0237-x

  6. Herbert A, Rich A (1996) The biology of left-handed Z-DNA. J Biol Chem. https://doi.org/10.1074/jbc.271.20.11595

  7. Chiang DC, Li Y, Ng SK (2021) The role of the Z-DNA binding domain in innate immunity and stress granules. Front Immunol. https://doi.org/10.3389/fimmu.2020.625504

  8. Lushnikov AY et al (2004) Interaction of the Zα domain of human ADAR1 with a negatively supercoiled plasmid visualized by atomic force microscopy. Nucleic Acids Res. https://doi.org/10.1093/nar/gkh810

  9. Herbert A et al (1998) The Zα domain from human ADAR1 binds to the Z-DNA conformer of many different sequences. Nucleic Acids Res. https://doi.org/10.1093/nar/26.15.3486

  10. Schwartz T, Rould MA, Lowenhaupt K, Herbert A, Rich A (1999) Crystal structure of the Zalpha domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science 11(80):1841–1845

    Article  Google Scholar 

  11. Brown BA, Lowenhaupt K, Wilbert CM, Hanlon EB, Rich A (2000) The Zα domain of the editing enzyme dsRNA adenosine deaminase binds left-handed Z-RNA as well as Z-DNA. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.240464097

  12. Placido D, Brown BA, Lowenhaupt K, Rich A, Athanasiadis A (2007) A left-handed RNA double helix bound by the Zα domain of the RNA-editing enzyme ADAR1. Structure. https://doi.org/10.1016/j.str.2007.03.001

  13. Kruse H, Mrazikova K, D’Ascenzo L, Sponer J, Auffinger P (2020) Short but weak: the Z-DNA lone-pair·π conundrum challenges standard Carbon Van der Waals Radii. Angew Chem Int Ed. https://doi.org/10.1002/anie.202004201

  14. Chung H et al (2018) Human ADAR1 prevents endogenous RNA from triggering translational shutdown. Cell. https://doi.org/10.1016/j.cell.2017.12.038

  15. Feng S et al (2011) Alternate rRNA secondary structures as regulators of translation. Nat Struct Mol Biol. https://doi.org/10.1038/nsmb.1962

  16. Dickerson RE et al (1982) The anatomy of A-, B-, and Z-DNA. Science 80. https://doi.org/10.1126/science.7071593

  17. Ha SC et al (2009) The structures of non-CG-repeat Z-DNAs co-crystallized with the Z-DNA-binding domain, hZαADAR1. Nucleic Acids Res. https://doi.org/10.1093/nar/gkn976

  18. Lee YM et al (2013) NMR investigation on the DNA binding and B-Z transition pathway of the Zα domain of human ADAR1. Biophys Chem. https://doi.org/10.1016/j.bpc.2012.12.002

  19. Lee YM et al (2012) NMR study on the B-Z junction formation of DNA duplexes induced by Z-DNA binding domain of human ADAR1. J Am Chem Soc. https://doi.org/10.1021/ja211581b

  20. Kim D et al (2018) Sequence preference and structural heterogeneity of BZ junctions. Nucleic Acids Res. https://doi.org/10.1093/nar/gky784

  21. Sung CH, Lowenhaupt K, Rich A, Kim YG, Kyeong KK (2005) Crystal structure of a junction between B-DNA and Z-DNA reveals two extruded bases. Nature. https://doi.org/10.1038/nature04088

  22. Kim D et al (2009) Base extrusion is found at helical junctions between right- and left-handed forms of DNA and RNA. Nucleic Acids Res. https://doi.org/10.1093/nar/gkp364

  23. Lee EH et al (2010) NMR study of hydrogen exchange during the B-Z transition of a DNA duplex induced by the Zα domains of yatapoxvirus E3L. FEBS Lett. https://doi.org/10.1016/j.febslet.2010.10.003

  24. Lee AR et al (2019) NMR dynamics study reveals the Zα domain of human ADAR1 associates with and dissociates from Z-RNA more slowly than Z-DNA. ACS Chem Biol. https://doi.org/10.1021/acschembio.8b00914

  25. Jeong M et al (2014) NMR study of the Z-DNA binding mode and B-Z transition activity of the Zα domain of human ADAR1 when perturbed by mutation on the α3 helix and β-hairpin. Arch Biochem Biophys. https://doi.org/10.1016/j.abb.2014.06.026

  26. Nichols PJ et al (2021) Recognition of non-CpG repeats in Alu and ribosomal RNAs by the Z-RNA binding domain of ADAR1 induces A-Z junctions. Nat Commun. https://doi.org/10.1038/s41467-021-21039-0

  27. Schwartz T et al (1999) Proteolytic dissection of Zab, the Z-DNA-binding domain of human ADAR1. J Biol Chem. https://doi.org/10.1074/jbc.274.5.2899

  28. Brunelle JL, Green R (2013) In vitro transcription from plasmid or PCR-amplified DNA. Methods Enzymol. https://doi.org/10.1016/B978-0-12-420037-1.00005-1

  29. Scott LG, Hennig M (2008) RNA structure determination by NMR. Methods Mol Biol. https://doi.org/10.1007/978-1-60327-159-2_2

  30. Jeng S, Gardnerq J, Gumport R (1992) Transcription termination in vitro by bacteriophage T7 RNA polymerase. J. Biol, Chem

    Google Scholar 

  31. Beckert B, Masquida B (2011) Synthesis of RNA by in vitro transcription. Methods Mol Biol. https://doi.org/10.1007/978-1-59745-248-9_3

  32. Edwards AL, Garst AD, Batey RT (2009) Determining structures of RNA aptamers and riboswitches by X-ray crystallography. Methods Mol Biol. https://doi.org/10.1007/978-1-59745-557-2_9

  33. Francis AJ, Resendiz MJE (2017) Protocol for the solid-phase synthesis of oligomers of RNA containing a 2′-o-thiophenylmethyl modification and characterization via circular dichroism. J Vis Exp. https://doi.org/10.3791/56189

  34. Petrov A, Wu T, Puglisi EV, Puglisi JD (2013) RNA purification by preparative polyacrylamide gel electrophoresis. Methods Enzymol. https://doi.org/10.1016/B978-0-12-420037-1.00017-8

  35. Easton LE, Shibata Y, Lukavsky PJ (2010) Rapid, nondenaturing RNA purification using weak anion-exchange fast performance liquid chromatography. RNA. https://doi.org/10.1261/rna.1862210

  36. Kim I, Mckenna SA, Puglisi EV, Puglisi JD (2007) Rapid purification of RNAs using fast performance liquid chromatography (FPLC). RNA. https://doi.org/10.1261/rna.342607

  37. Miyahara T, Nakatsuji H, Sugiyama H (2016) Similarities and differences between RNA and DNA double-helical structures in circular dichroism spectroscopy: a SAC-CI study. J Phys Chem A. https://doi.org/10.1021/acs.jpca.6b08023

  38. Freyer MW, Lewis EA (2008) Isothermal titration calorimetry: experimental design, data analysis, and probing macromolecule/ligand binding and kinetic interactions. Methods Cell Biol. https://doi.org/10.1016/S0091-679X(07)84004-0

  39. Cole JL, Lary JW, Moody P, Laue TM (2008) Analytical ultracentrifugation: sedimentation velocity and sedimentation equilibrium. Methods Cell Biol. https://doi.org/10.1016/S0091-679X(07)84006-4

  40. Balbo A, Zhao H, Brown PH, Schuck P (2010) Assembly, loading, and alignment of an analytical ultracentrifuge sample cell. J Vis Exp. https://doi.org/10.3791/1530

  41. Fürtig B, Richter C, Wöhnert J, Schwalbe H (2003) NMR spectroscopy of RNA. ChemBioChem 4:936–962

    Article  PubMed  Google Scholar 

  42. Delaglio F et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  CAS  PubMed  Google Scholar 

  43. Kladwang W, Hum J, Das R (2012) Ultraviolet shadowing of RNA can cause significant chemical damage in seconds. Sci Rep. https://doi.org/10.1038/srep00517

  44. Edelmann FT, Niedner A, Niessing D (2014) Production of pure and functional RNA for in vitro reconstitution experiments. Methods. https://doi.org/10.1016/j.ymeth.2013.08.034

  45. Woodson SA, Koculi E (2009) Analysis of RNA folding by native polyacrylamide gel electrophoresis. Methods Enzymol. https://doi.org/10.1016/s0076-6879(09)69009-1

  46. Klump HH, Jovin TM (1987) Formation of a left-handed RNA double helix: energetics of the A-Z transition of poly[r(G-C)] in concentrated sodium perchlorate solutions. Biochemistry 26:5186–5190

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quentin Vicens or Beat Vögeli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nichols, P.J., Bevers, S., Henen, M.A., Kieft, J.S., Vicens, Q., Vögeli, B. (2023). Adoption of A–Z Junctions in RNAs by Binding of Zα Domains. In: Kim, K.K., Subramani, V.K. (eds) Z-DNA. Methods in Molecular Biology, vol 2651. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3084-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3084-6_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3083-9

  • Online ISBN: 978-1-0716-3084-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics