Skip to main content

Live Cell Imaging of Gliding Motility of Flavobacterium johnsoniae Under High-Resolution Microscopy

  • Protocol
  • First Online:
Bacterial and Archaeal Motility

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2646))

  • 553 Accesses

Abstract

Many phylum Bacteroidetes bacteria are motile without either flagella or pili. These cells move on surfaces such as glass or agar, and a motor generates a propulsion force for the cells via a proton motive force across the cytoplasmic membrane. The gliding motility depends on the helical track of cell adhesin along the longer axis of the cell body. Here, we describe live-cell imaging of gliding motility under optical microscopy, as well as an immunofluorescent labeling method for visualizing helical trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McBride MJ (2001) Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu Rev Microbiol 55:49–75. https://doi.org/10.1146/annurev.micro.55.1.49

    Article  CAS  PubMed  Google Scholar 

  2. McBride MJ, Zhu Y (2013) Gliding motility and Por secretion system genes are widespread among members of the phylum Bacteroidetes. J Bacteriol 195:270–278. https://doi.org/10.1128/jb.01962-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McBride MJ, Sandkvist M, Cascales E et al (2019) Bacteroidetes gliding motility and the type IX secretion system. Microbiol Spectr 7:7.1.15. https://doi.org/10.1128/microbiolspec.PSIB-0002-2018

    Article  Google Scholar 

  4. Miyata M, Robinson RC, Uyeda TQP et al (2020) Tree of motility – a proposed history of motility systems in the tree of life. Genes Cells 25:6–21. https://doi.org/10.1111/gtc.12737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wadhwa N, Berg HC (2022) Bacterial motility: machinery and mechanisms. Nat Rev Microbiol. https://doi.org/10.1038/s41579-021-00626-4

  6. Nelson SS, Bollampalli S, McBride MJ (2008) SprB is a cell surface component of the Flavobacterium johnsoniae gliding motility machinery. J Bacteriol 190:2851–2857. https://doi.org/10.1128/jb.01904-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nakane D, Sato K, Wada H et al (2013) Helical flow of surface protein required for bacterial gliding motility. Proc Natl Acad Sci U S A 110:11145–11150. https://doi.org/10.1073/pnas.1219753110

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wada H, Nakane D, Chen H-Y (2013) Bidirectional bacterial gliding motility powered by the collective transport of cell surface proteins. Phys Rev Lett 111:248102. https://doi.org/10.1103/PhysRevLett.111.248102

    Article  CAS  PubMed  Google Scholar 

  9. Mignot T, Shaevitz JW, Hartzell PL et al (2007) Evidence that focal adhesion complexes power bacterial gliding motility. Science 315:853–856. https://doi.org/10.1126/science.1137223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nan B, Chen J, Neu JC et al (2011) Myxobacteria gliding motility requires cytoskeleton rotation powered by proton motive force. Proc Natl Acad Sci U S A 108:2498–2503. https://doi.org/10.1073/pnas.1018556108

    Article  PubMed  PubMed Central  Google Scholar 

  11. Faure LM, Fiche J-B, Espinosa L et al (2016) The mechanism of force transmission at bacterial focal adhesion complexes. Nature 539:530–535. https://doi.org/10.1038/nature20121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nan B, McBride Mark J, Chen J et al (2014) Bacteria that glide with helical tracks. Curr Biol 24:R169–R173. https://doi.org/10.1016/j.cub.2013.12.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nan B, Zusman DR (2016) Novel mechanisms power bacterial gliding motility. Mol Microbiol 101:186–193. https://doi.org/10.1111/mmi.13389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Braun TF, McBride MJ (2005) Flavobacterium johnsoniae GldJ is a lipoprotein that is required for gliding motility. J Bacteriol 187:2628–2637. https://doi.org/10.1128/jb.187.8.2628-2637.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu J, McBride MJ, Subramaniam S (2007) Cell surface filaments of the gliding bacterium Flavobacterium johnsoniae revealed by cryo-electron tomography. J Bacteriol 189:7503–7506. https://doi.org/10.1128/jb.00957-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Katayama E, Tahara YO, Bertin C et al (2019) Application of spherical substrate to observe bacterial motility machineries by Quick-Freeze-Replica Electron Microscopy. Sci Rep 9:14765. https://doi.org/10.1038/s41598-019-51283-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sato K, Naito M, Yukitake H et al (2010) A protein secretion system linked to bacteroidete gliding motility and pathogenesis. Proc Natl Acad Sci U S A 107:276–281. https://doi.org/10.1073/pnas.0912010107

    Article  PubMed  Google Scholar 

  18. McBride MJ, Nakane D (2015) Flavobacterium gliding motility and the type IX secretion system. Curr Opin Microbiol 28:72–77. https://doi.org/10.1016/j.mib.2015.07.016

    Article  CAS  PubMed  Google Scholar 

  19. Trivedi A, Gosai J, Nakane D et al (2022) Design principles of the rotary type 9 secretion system. Front Microbiol 13:845563. https://doi.org/10.3389/fmicb.2022.845563

  20. Shrivastava A, Johnston JJ, van Baaren JM et al (2013) Flavobacterium johnsoniae GldK, GldL, GldM, and SprA are required for secretion of the cell surface gliding motility adhesins SprB and RemA. J Bacteriol 195:3201–3212. https://doi.org/10.1128/jb.00333-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gorasia DG, Veith PD, Hanssen EG et al (2016) Structural insights into the PorK and PorN components of the Porphyromonas gingivalis type IX secretion system. PLoS Pathog 12:e1005820. https://doi.org/10.1371/journal.ppat.1005820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Deme JC, Johnson S, Vickery O et al (2020) Structures of the stator complex that drives rotation of the bacterial flagellum. Nat Microbiol 5:1553–1564. https://doi.org/10.1038/s41564-020-0788-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Santiveri M, Roa-Eguiara A, Kühne C et al (2020) Structure and function of stator units of the bacterial flagellar motor. Cell 183:244–257.e216. https://doi.org/10.1016/j.cell.2020.08.016

    Article  CAS  PubMed  Google Scholar 

  24. Hennell James R, Deme JC, Kjær A et al (2021) Structure and mechanism of the proton-driven motor that powers type 9 secretion and gliding motility. Nat Microbiol 6:221–233. https://doi.org/10.1038/s41564-020-00823-6

    Article  CAS  PubMed  Google Scholar 

  25. Shrivastava A, Berg HC (2020) A molecular rack and pinion actuates a cell-surface adhesin and enables bacterial gliding motility. Sci Adv 6:eaay6616. https://doi.org/10.1126/sciadv.aay6616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McBride MJ, Kempf MJ (1996) Development of techniques for the genetic manipulation of the gliding bacterium Cytophaga johnsonae. J Bacteriol 178:583–590. https://doi.org/10.1128/jb.178.3.583-590.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McBride MJ, Xie G, Martens EC et al (2009) Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol 75:6864–6875. https://doi.org/10.1128/aem.01495-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kita D, Shibata S, Kikuchi Y et al (2016) Involvement of the type IX secretion system in Capnocytophaga ochracea gliding motility and biofilm formation. Appl Environ Microbiol 82:1756–1766. https://doi.org/10.1128/aem.03452-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rhodes RG, Nelson SS, Pochiraju S et al (2011) Flavobacterium johnsoniae sprB is part of an operon spanning the additional gliding motility genes sprC, sprD, and sprF. J Bacteriol 193:599–610. https://doi.org/10.1128/jb.01203-10

    Article  CAS  PubMed  Google Scholar 

  30. Zhu Y, McBride MJ (2016) Comparative analysis of Cellulophaga algicola and Flavobacterium johnsoniae gliding motility. J Bacteriol 198:1743–1754. https://doi.org/10.1128/JB.01020-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pate JL, Chang L-YE (1979) Evidence that gliding motility in prokaryotic cells is driven by rotary assemblies in the cell envelopes. Curr Microbiol 2:59–64. https://doi.org/10.1007/BF02601737

    Article  Google Scholar 

  32. Lapidus IR, Berg HC (1982) Gliding motility of Cytophaga sp. strain U67. J Bacteriol 151:384–398. https://doi.org/10.1128/jb.151.1.384-398.1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shrivastava A, Roland T, Berg HC (2016) The screw-like movement of a gliding bacterium is powered by spiral motion of cell-surface adhesins. Biophys J 111:1008–1013. https://doi.org/10.1016/j.bpj.2016.07.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shibata S, Tahara YO, Katayama E et al (2023) Filamentous structures in the cell envelope are associated with Bacteroidetes gliding machinery. Commun Biol in press

    Google Scholar 

  35. Song L, Perpich JD, Wu C et al (2022) A unique bacterial secretion machinery with multiple secretion centers. Proc Natl Acad Sci U S A 119:e2119907119. https://doi.org/10.1073/pnas.2119907119

  36. Vincent MS, Comas Hervada C, Sebban-Kreuzer C et al (2022) Dynamic proton-dependent motors power type IX secretion and gliding motility in Flavobacterium. PLOS Biol 20:e3001443. https://doi.org/10.1371/journal.pbio.3001443

  37. Hennell James R, Deme JC, Hunter A et al (2022) mBio 13:e0026722. https://doi.org/10.1128/mbio.00267-22

Download references

Acknowledgments

This work was supported by KAKENHI (16H06230, 20H05543, 21K07020, 22H05066 to DN, and 17K17085, 19K10083 to SS) and funds from the Noguchi Institute to DN. We thank Mark McBride for kindly gifting the antiserum against SprB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Nakane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nakane, D., Shibata, S. (2023). Live Cell Imaging of Gliding Motility of Flavobacterium johnsoniae Under High-Resolution Microscopy. In: Minamino, T., Miyata, M., Namba, K. (eds) Bacterial and Archaeal Motility. Methods in Molecular Biology, vol 2646. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3060-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3060-0_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3059-4

  • Online ISBN: 978-1-0716-3060-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics