Skip to main content

Beyond the Primary Structure of Nucleic Acids: Potential Roles of Epigenetics and Noncanonical Structures in the Regulations of Plant Growth and Stress Responses

  • Protocol
  • First Online:
Plant Abiotic Stress Signaling

Abstract

Epigenetics deals with changes in gene expression that are not caused by modifications in the primary sequence of nucleic acids. These changes beyond primary structures of nucleic acids not only include DNA/RNA methylation, but also other reversible conversions, together with histone modifications or RNA interference. In addition, under particular conditions (such as specific ion concentrations or protein-induced stabilization), the right-handed double-stranded DNA helix (B-DNA) can form noncanonical structures commonly described as “non-B DNA” structures. These structures comprise, for example, cruciforms, i-motifs, triplexes, and G-quadruplexes. Their formation often leads to significant differences in replication and transcription rates. Noncanonical RNA structures have also been documented to play important roles in translation regulation and the biology of noncoding RNAs. In human and animal studies, the frequency and dynamics of noncanonical DNA and RNA structures are intensively investigated, especially in the field of cancer research and neurodegenerative diseases. In contrast, noncanonical DNA and RNA structures in plants have been on the fringes of interest for a long time and only a few studies deal with their formation, regulation, and physiological importance for plant stress responses. Herein, we present a review focused on the main fields of epigenetics in plants and their possible roles in stress responses and signaling, with special attention dedicated to noncanonical DNA and RNA structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waddington CH (2008) The basic ideas of biology. Biol Theory 3:238–253. https://doi.org/10.1162/biot.2008.3.3.238

    Article  Google Scholar 

  2. Dupont C, Armant DR, Brenner CA (2009) Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med 27:351–357. https://doi.org/10.1055/s-0029-1237423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wu CT, Morris JR (2001) Genes, genetics, and epigenetics: a correspondence. Science 293:1103–1105. https://doi.org/10.1126/science.293.5532.1103

    Article  CAS  Google Scholar 

  4. Shrestha A, Thapa B (2020) Epigenetic mechanisms and its role in plant growth and development. J Plant Biochem Physiol 8:255

    Google Scholar 

  5. Wang E, Thombre R, Shah Y et al (2021) G-Quadruplexes as pathogenic drivers in neurodegenerative disorders. Nucleic Acids Res 49:4816–4830. https://doi.org/10.1093/nar/gkab164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pan F, Zhang Y, Xu P et al (2021) Molecular conformations and dynamics of nucleotide repeats associated with neurodegenerative diseases: double helices and CAG hairpin loops. Comput Struct Biotechnol J 19:2819–2832. https://doi.org/10.1016/j.csbj.2021.04.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kosiol N, Juranek S, Brossart P et al (2021) G-quadruplexes: a promising target for cancer therapy. Mol Cancer 20:40. https://doi.org/10.1186/s12943-021-01328-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Čutová M, Manta J, Porubiaková O et al (2020) Divergent distributions of inverted repeats and G-quadruplex forming sequences in Saccharomyces cerevisiae. Genomics 112:1897–1901. https://doi.org/10.1016/j.ygeno.2019.11.002

    Article  CAS  PubMed  Google Scholar 

  9. Bartas M, Čutová M, Brázda V et al (2019) The presence and localization of G-quadruplex forming sequences in the domain of bacteria. Molecules 24:1711. https://doi.org/10.3390/molecules24091711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brázda V, Luo Y, Bartas M et al (2020) G-quadruplexes in the archaea domain. Biomolecules 10:1349. https://doi.org/10.3390/biom10091349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cagirici HB, Budak H, Sen TZ (2021) Genome-wide discovery of G-quadruplexes in barley. Sci Rep 11:7876. https://doi.org/10.1038/s41598-021-86838-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang X, Cheema J, Zhang Y et al (2020) RNA G-quadruplex structures exist and function in vivo in plants. Genome Biol 21:226. https://doi.org/10.1186/s13059-020-02142-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yadav V, Hemansi KN et al (2017) G quadruplex in plants: a ubiquitous regulatory element and its biological relevance. Front Plant Sci 8:1163. https://doi.org/10.3389/fpls.2017.01163

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kim N (2019) The interplay between G-quadruplex and transcription. Curr Med Chem 26:2898–2917. https://doi.org/10.2174/0929867325666171229132619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cho H, Cho HS, Nam H et al (2018) Translational control of phloem development by RNA G-quadruplex–JULGI determines plant sink strength. Nat Plants 4:376–390. https://doi.org/10.1038/s41477-018-0157-2

    Article  CAS  PubMed  Google Scholar 

  16. Zhao J, Bacolla A, Wang G, Vasquez KM (2010) Non-B DNA structure-induced genetic instability and evolution. Cell Mol Life Sci 67:43–62. https://doi.org/10.1007/s00018-009-0131-2

    Article  CAS  PubMed  Google Scholar 

  17. Piazza A, Adrian M, Samazan F et al (2015) Short loop length and high thermal stability determine genomic instability induced by G-quadruplex-forming minisatellites. EMBO J 34:1718–1734. https://doi.org/10.15252/embj.201490702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goswami P, Bartas M, Lexa M et al (2021) SARS-CoV-2 hot-spot mutations are significantly enriched within inverted repeats and CpG island loci. Brief Bioinform 22:1338–1345. https://doi.org/10.1093/bib/bbaa385

    Article  CAS  PubMed  Google Scholar 

  19. Laanen P, Saenen E, Mysara M et al (2021) Changes in DNA methylation in Arabidopsis thaliana plants exposed over multiple generations to gamma radiation. Front Plant Sci 12:611783. https://doi.org/10.3389/fpls.2021.611783

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang K, Sridhar VV, Zhu J et al (2007) Distinctive core histone post-translational modification patterns in Arabidopsis thaliana. PLoS One 2:e1210. https://doi.org/10.1371/journal.pone.0001210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu X, Yang S, Yu CW et al (2016) Chapter six – histone acetylation and plant development. In: Lin C, Luan S (eds) Developmental signaling in plants. Academic Press, Cambridge, MA. https://doi.org/10.1016/bs.enz.2016.08.001

    Chapter  Google Scholar 

  22. Liu C, Lu F, Cui X, Cao X (2010) Histone methylation in higher plants. Annu Rev Plant Biol 61:395–420. https://doi.org/10.1146/annurev.arplant.043008.091939

    Article  CAS  PubMed  Google Scholar 

  23. Jambhekar A, Dhall A, Shi Y (2019) Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol 20:625–641. https://doi.org/10.1038/s41580-019-0151-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Song X, Cao X (2017) Context and complexity: analyzing methylation in trinucleotide sequences. Trends Plant Sci 22:351–353. https://doi.org/10.1016/j.tplants.2017.03.013

    Article  CAS  PubMed  Google Scholar 

  25. Kenchanmane Raju SG, Ritter EJ, Niederhuth CE (2019) Establishment, maintenance, and biological roles of non-CG methylation in plants. Essays Biochem 63:743–755. https://doi.org/10.1042/EBC20190032

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gouil Q, Baulcombe DC (2016) DNA methylation signatures of the plant chromomethyltransferases. PLoS Genet 12:e1006526. https://doi.org/10.1371/journal.pgen.1006526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Finnegan EJ, Kovac KA (2000) Plant DNA methyltransferases. Plant Mol Biol 43:189–201. https://doi.org/10.1023/a:1006427226972

    Article  CAS  PubMed  Google Scholar 

  28. He XJ, Chen T, Zhu JK (2011) Regulation and function of DNA methylation in plants and animals. Cell Res 21:442–465. https://doi.org/10.1038/cr.2011.23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee SI, Kim NS (2014) Transposable elements and genome size variations in plants. Genomics Inform 12:87–97. https://doi.org/10.5808/GI.2014.12.3.87

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115. https://doi.org/10.1126/science.1178534

    Article  CAS  PubMed  Google Scholar 

  31. Zhang X, Yazaki J, Sundaresan A et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201. https://doi.org/10.1016/j.cell.2006.08.003

    Article  CAS  PubMed  Google Scholar 

  32. Kumar S, Chinnusamy V, Mohapatra T (2018) Epigenetics of modified DNA bases: 5-methylcytosine and beyond. Front Genet 9:640. https://doi.org/10.3389/fgene.2018.00640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu L, Sun Y, Zhang X et al (2022) ROS1 promotes low temperature-induced anthocyanin accumulation in apple by demethylating the promoter of anthocyanin-associated genes. Hortic Res 9:uhac007. https://doi.org/10.1093/hr/uhac007

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yue H, Nie X, Yan Z, Weining S (2019) N6-methyladenosine regulatory machinery in plants: composition, function and evolution. Plant Biotechnol J 17:1194–1208. https://doi.org/10.1111/pbi.13149

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gardiner-Garden M, Frommer M (1987) CpG Islands in vertebrate genomes. J Mol Biol 196:261–282. https://doi.org/10.1016/0022-2836(87)90689-9

    Article  CAS  PubMed  Google Scholar 

  36. Anreiter I, Mir Q, Simpson JT et al (2021) New twists in detecting mRNA modification dynamics. Trends Biotechnol 39:72–89. https://doi.org/10.1016/j.tibtech.2020.06.002

    Article  CAS  PubMed  Google Scholar 

  37. Manduzio S, Kang H (2021) RNA methylation in chloroplasts or mitochondria in plants. RNA Biol 18:2127–2135. https://doi.org/10.1080/15476286.2021.1909321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Manavski N, Vicente A, Chi W, Meurer J (2021) The chloroplast epitranscriptome: factors, sites, regulation, and detection methods. Genes (Basel) 12:1121. https://doi.org/10.3390/genes12081121

    Article  CAS  PubMed  Google Scholar 

  39. Machnicka MA, Milanowska K, Osman Oglou O et al (2013) MODOMICS: a database of RNA modification pathways—2013 update. Nucleic Acids Res 41:D262–D267. https://doi.org/10.1093/nar/gks1007

    Article  CAS  PubMed  Google Scholar 

  40. Boccaletto P, Machnicka MA, Purta E et al (2018) MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res 46:D303–D307. https://doi.org/10.1093/nar/gkx1030

    Article  CAS  PubMed  Google Scholar 

  41. Jackman JE, Alfonzo JD (2013) Transfer RNA modifications: nature’s combinatorial chemistry playground. Wiley Interdiscip Rev RNA 4:35–48. https://doi.org/10.1002/wrna.1144

    Article  CAS  PubMed  Google Scholar 

  42. Chmielowska-Bąk J, Arasimowicz-Jelonek M, Deckert J (2019) In search of the mRNA modification landscape in plants. BMC Plant Biol 19:421. https://doi.org/10.1186/s12870-019-2033-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Arasimowicz-Jelonek M, Floryszak-Wieczorek J (2019) A physiological perspective on targets of nitration in NO-based signaling networks in plants. J Exp Bot 70:4379–4389. https://doi.org/10.1093/jxb/erz300

    Article  CAS  PubMed  Google Scholar 

  44. Waititu JK, Zhang C, Liu J, Wang H (2020) Plant non-coding RNAs: origin, biogenesis, mode of action and their roles in abiotic stress. Int J Mol Sci 21:8401. https://doi.org/10.3390/ijms21218401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu Y, Zhang Y, Chen X et al (2019) Plant noncoding RNAs: hidden players in development and stress responses. Annu Rev Cell Dev Biol 35:407–431. https://doi.org/10.1146/annurev-cellbio-100818-125218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203. https://doi.org/10.1016/j.tplants.2012.01.010

    Article  CAS  PubMed  Google Scholar 

  47. Xu C, Tian J, Mo B (2013) siRNA-mediated DNA methylation and H3K9 dimethylation in plants. Protein Cell 4:656–663. https://doi.org/10.1007/s13238-013-3052-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jia X, Yan J, Tang G (2011) MicroRNA-mediated DNA methylation in plants. Front Biol 6:133–139. https://doi.org/10.1007/s11515-011-1136-4

    Article  CAS  Google Scholar 

  49. Zhang P, Li S, Chen M (2020) Characterization and function of circular RNAs in plants. Front Mol Biosci 7:91. https://doi.org/10.3389/fmolb.2020.00091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kawaji H, Hayashizaki Y (2008) Exploration of small RNAs. PLoS Genet 4:e22. https://doi.org/10.1371/journal.pgen.0040022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Morais P, Adachi H, Yu YT (2021) Spliceosomal snRNA epitranscriptomics. Front Genet 12:652129. https://doi.org/10.3389/fgene.2021.652129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–738. https://doi.org/10.1038/171737a0

    Article  CAS  PubMed  Google Scholar 

  53. Arnott S, Hukins DWL (1973) Refinement of the structure of B-DNA and implications for the analysis of X-ray diffraction data from fibers of biopolymers. J Mol Biol 81:93–105. https://doi.org/10.1016/0022-2836(73)90182-4

    Article  CAS  PubMed  Google Scholar 

  54. Shing P, Carter M (2011) DNA structure: alphabet soup for the cellular soul. In: Seligmann H (ed) DNA replication-current advances. IntechOpen, London

    Google Scholar 

  55. Ghosh A, Bansal M (2003) A glossary of DNA structures from A to Z. Acta Crystallogr D Biol Crystallogr 59:620–626. https://doi.org/10.1107/S0907444903003251

    Article  CAS  PubMed  Google Scholar 

  56. Franklin RE, Gosling RG (1953) The structure of sodium thymonucleate fibres. I. The influence of water content. Acta Crystallogr 6:673–677. https://doi.org/10.1107/S0365110X53001939

    Article  CAS  Google Scholar 

  57. Wang AHJ, Quigley GJ, Kolpak FJ et al (1979) Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282:680–686. https://doi.org/10.1038/282680a0

    Article  CAS  PubMed  Google Scholar 

  58. Wang G (2007) Z-DNA, an active element in the genome. Front Biosci 12:4424. https://doi.org/10.2741/2399

    Article  CAS  PubMed  Google Scholar 

  59. Kresge N, Simoni RD, Hill RL (2009) The discovery of Z-DNA: the work of Alexander Rich. J Biol Chem 284:e23–e25. https://doi.org/10.1016/S0021-9258(20)37564-5

    Article  CAS  PubMed Central  Google Scholar 

  60. Pohl FM, Jovin TM (1972) Salt-induced co-operative conformational change of a synthetic DNA: equilibrium and kinetic studies with poly (dG-dC). J Mol Biol 67:375–396. https://doi.org/10.1016/0022-2836(72)90457-3

    Article  CAS  PubMed  Google Scholar 

  61. Zhou C, Zhou F, Xu Y (2009) Comparative analyses of distributions and functions of Z-DNA in Arabidopsis and rice. Genomics 93:383–391. https://doi.org/10.1016/j.ygeno.2008.11.012

    Article  CAS  PubMed  Google Scholar 

  62. Ferl RJ, Paul AL (1992) Chemical detection of Z-DNA within the maize Adh1 promoter. Plant Mol Biol 18:1181–1184. https://doi.org/10.1007/BF00047722

    Article  CAS  PubMed  Google Scholar 

  63. Marincs F, White DWR (1996) Regulation of gene expression at a distance: the hypothetical role of regulatory protein-mediated topological changes of DNA. FEBS Lett 382:1–5. https://doi.org/10.1016/0014-5793(96)00139-1

    Article  CAS  PubMed  Google Scholar 

  64. Gangappa SN, Srivastava AK, Maurya JP et al (2013) Z-box binding transcription factors (ZBFs): a new class of transcription factors in Arabidopsis seedling development. Mol Plant 6:1758–1768. https://doi.org/10.1093/mp/sst140

    Article  CAS  PubMed  Google Scholar 

  65. Krzyzaniak A, Siatecka M, Szyk A et al (2000) Specific induction of Z-DNA conformation by a nuclear localization signal peptide of lupin glutaminyl tRNA synthetase. Mol Biol Rep 27:51–54. https://doi.org/10.1023/A:1007146516710

    Article  CAS  PubMed  Google Scholar 

  66. Gellert M, Lipsett MN, Davies DR (1962) Helix formation by guanylic acid. Proc Natl Acad Sci 48:2013–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Henderson E, Hardin CC, Walk SK et al (1987) Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine·guanine base pairs. Cell 51:899–908. https://doi.org/10.1016/0092-8674(87)90577-0

    Article  CAS  PubMed  Google Scholar 

  68. Li X, Sánchez-Ferrer A, Bagnani M et al (2020) Metal ions confinement defines the architecture of G-quartet, G-quadruplex fibrils and their assembly into nematic tactoids. Proc Natl Acad Sci 117:9832–9839. https://doi.org/10.1073/pnas.1919777117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bartas M, Brázda V, Karlický V (2018) Bioinformatics analyses and in vitro evidence for five and six stacked G-quadruplex forming sequences. Biochimie 150:70–75. https://doi.org/10.1016/j.biochi.2018.05.002

    Article  CAS  PubMed  Google Scholar 

  70. Wu F, Niu K, Cui Y et al (2021) Genome-wide analysis of DNA G-quadruplex motifs across 37 species provides insights into G4 evolution. Commun Biol 4:1–11. https://doi.org/10.1038/s42003-020-01643-4

    Article  CAS  Google Scholar 

  71. Griffin BD, Bass HW (2018) Review: plant G-quadruplex (G4) motifs in DNA and RNA; abundant, intriguing sequences of unknown function. Plant Sci 269:143–147. https://doi.org/10.1016/j.plantsci.2018.01.011

    Article  CAS  PubMed  Google Scholar 

  72. Dobrovolná M, Bohálová N, Peška V et al (2022) The newly sequenced genome of Pisum sativum is replete with potential G-quadruplex-forming sequences—implications for evolution and biological regulation. Int J Mol Sci 23:8482. https://doi.org/10.3390/ijms23158482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Feng Y, Tao S, Zhang P et al (2022) Epigenomic features of DNA G-quadruplexes and their roles in regulating rice gene transcription. Plant Physiol 188:1632–1648. https://doi.org/10.1093/plphys/kiab566

    Article  CAS  PubMed  Google Scholar 

  74. Cagirici HB, Sen TZ (2020) Genome-wide discovery of G-quadruplexes in wheat: distribution and putative functional roles. G3 (Bethesda) 10:2021–2032. https://doi.org/10.1534/g3.120.401288

    Article  CAS  PubMed  Google Scholar 

  75. Garg R, Aggarwal J, Thakkar B (2016) Genome-wide discovery of G-quadruplex forming sequences and their functional relevance in plants. Sci Rep 6:28211. https://doi.org/10.1038/srep28211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Volná A, Bartas M, Karlický V et al (2021) G-quadruplex in gene encoding large subunit of plant RNA polymerase II: a billion-year-old story. Int J Mol Sci 22:7381. https://doi.org/10.3390/ijms22147381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lexa M, Kejnovský E, Steflová P et al (2014) Quadruplex-forming sequences occupy discrete regions inside plant LTR retrotransposons. Nucleic Acids Res 42:968–978. https://doi.org/10.1093/nar/gkt893

    Article  CAS  PubMed  Google Scholar 

  78. Mullen MA, Olson KJ, Dallaire P et al (2010) RNA G-Quadruplexes in the model plant species Arabidopsis thaliana: prevalence and possible functional roles. Nucleic Acids Res 38:8149–8163. https://doi.org/10.1093/nar/gkq804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Havlová K, Fajkus J (2020) G4 structures in control of replication and transcription of rRNA genes. Front Plant Sci 11:593692. https://doi.org/10.3389/fpls.2020.593692

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kwok CK, Ding Y, Shahid S et al (2015) A stable RNA G-quadruplex within the 5′-UTR of Arabidopsis thaliana ATR mRNA inhibits translation. Biochem J 467:91–102. https://doi.org/10.1042/BJ20141063

    Article  CAS  PubMed  Google Scholar 

  81. Wu WQ, Zhang ML, Song CP (2020) A comprehensive evaluation of a typical plant telomeric G-quadruplex (G4) DNA reveals the dynamics of G4 formation, rearrangement, and unfolding. J Biol Chem 295:5461–5469. https://doi.org/10.1074/jbc.RA119.012383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Andorf CM, Kopylov M, Dobbs D et al (2014) G-quadruplex (G4) motifs in the maize (Zea mays L.) genome are enriched at specific locations in thousands of genes coupled to energy status, hypoxia, low sugar, and nutrient deprivation. J Genet Genomics 41:627–647. https://doi.org/10.1016/j.jgg.2014.10.004

    Article  PubMed  Google Scholar 

  83. Ding D, Wei C, Dong K et al (2020) LOTUS domain is a novel class of G-rich and G-quadruplex RNA binding domain. Nucleic Acids Res 48:9262–9272. https://doi.org/10.1093/nar/gkaa652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sjakste T, Leonova E, Petrovs R et al (2020) Tight DNA-protein complexes isolated from barley seedlings are rich in potential guanine quadruplex sequences. PeerJ 8:e8569. https://doi.org/10.7717/peerj.8569

    Article  PubMed  PubMed Central  Google Scholar 

  85. Volná A, Bartas M, Nezval J et al (2021) Searching for G-quadruplex-binding proteins in plants: new insight into possible G-quadruplex regulation. Biotech 10:20. https://doi.org/10.3390/biotech10040020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kopylov M, Bass HW, Stroupe ME (2015) The maize (Zea mays L.) nucleoside diphosphate kinase1 (ZmNDPK1) gene encodes a human NM23-H2 homologue that binds and stabilizes G-quadruplex DNA. Biochemistry 54:1743–1757. https://doi.org/10.1021/bi501284g

    Article  CAS  PubMed  Google Scholar 

  87. Thomas M, White RL, Davis RW (1976) Hybridization of RNA to double-stranded DNA: formation of R-loops. Proc Natl Acad Sci 73:2294–2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Xu W, Xu H, Li K et al (2017) The R-loop is a common chromatin feature of the Arabidopsis genome. Nat Plants 3:704–714. https://doi.org/10.1038/s41477-017-0004-x

    Article  CAS  PubMed  Google Scholar 

  89. Liu Y, Liu Q, Su H et al (2021) Genome-wide mapping reveals R-loops associated with centromeric repeats in maize. Genome Res 31:1409–1418. https://doi.org/10.1101/gr.275270.121

    Article  PubMed  PubMed Central  Google Scholar 

  90. Liu X, Gao Y, Liao J et al (2021) Genome-wide profiling of circular RNAs, alternative splicing, and R-loops in stem-differentiating xylem of Populus trichocarpa. J Integr Plant Biol 63:1294–1308. https://doi.org/10.1111/jipb.13081

    Article  CAS  PubMed  Google Scholar 

  91. Skourti-Stathaki K, Proudfoot NJ (2014) A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev 28:1384–1396. https://doi.org/10.1101/gad.242990.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kenchanmane Raju SK (2020) The R-loop: an additional chromatin feature for gene regulation in Arabidopsis. Plant Cell 32:785–786. https://doi.org/10.1105/tpc.20.00157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Xu W, Li K, Li S et al (2020) The R-loop atlas of Arabidopsis development and responses to environmental stimuli. Plant Cell 32:888–903. https://doi.org/10.1105/tpc.19.00802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yuan W, Zhou J, Tong J et al (2019) ALBA protein complex reads genic R-loops to maintain genome stability in Arabidopsis. Sci Adv 5:eaav9040. https://doi.org/10.1126/sciadv.aav9040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yang Z, Hou Q, Cheng L et al (2017) RNase H1 cooperates with DNA gyrases to restrict R-loops and maintain genome integrity in Arabidopsis chloroplasts. Plant Cell 29:2478–2497. https://doi.org/10.1105/tpc.17.00305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yang Z, Li M, Sun Q (2020) RHON1 co-transcriptionally resolves R-loops for Arabidopsis chloroplast genome maintenance. Cell Rep 30:243–256. https://doi.org/10.1016/j.celrep.2019.12.007

    Article  CAS  PubMed  Google Scholar 

  97. Zhang P, Gao J, Li X et al (2021) Interplay of DNA and RNA N6-methyladenine with R-loops in regulating gene transcription in Arabidopsis. Physiol Mol Biol Plants 27:1163–1171. https://doi.org/10.1007/s12298-021-01010-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lee CY, McNerney C, Ma K et al (2020) R-loop induced G-quadruplex in non-template promotes transcription by successive R-loop formation. Nat Commun 11:3392. https://doi.org/10.1038/s41467-020-17176-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shafiq S, Chen C, Yang J et al (2017) DNA topoisomerase 1 prevents R-loop accumulation to modulate auxin-regulated root development in rice. Mol Plant 10:821–833. https://doi.org/10.1016/j.molp.2017.04.001

    Article  CAS  PubMed  Google Scholar 

  100. Gierer A (1966) Model for DNA and protein interactions and the function of the operator. Nature 212:1480–1481. https://doi.org/10.1038/2121480a0

    Article  CAS  PubMed  Google Scholar 

  101. Brázda V, Lýsek J, Bartas M et al (2018) Complex analyses of short inverted repeats in all sequenced chloroplast DNAs. Biomed Res Int 2018:e1097018. https://doi.org/10.1155/2018/1097018

    Article  CAS  Google Scholar 

  102. Čechová J, Lýsek J, Bartas M et al (2018) Complex analyses of inverted repeats in mitochondrial genomes revealed their importance and variability. Bioinformatics 34:1081–1085. https://doi.org/10.1093/bioinformatics/btx729

    Article  CAS  PubMed  Google Scholar 

  103. Chen J, Hu Q, Zhang Y et al (2014) P-MITE: a database for plant miniature inverted-repeat transposable elements. Nucleic Acids Res 42:D1176–D1181. https://doi.org/10.1093/nar/gkt1000

    Article  CAS  PubMed  Google Scholar 

  104. Kim JM, Sasaki T, Ueda M et al (2015) Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Front Plant Sci 6:114. https://www.frontiersin.org/article/10.3389/fpls.2015.00114

    Article  PubMed  PubMed Central  Google Scholar 

  105. Stassen JHM, López A, Jain R et al (2018) The relationship between transgenerational acquired resistance and global DNA methylation in Arabidopsis. Sci Rep 8:14761. https://doi.org/10.1038/s41598-018-32448-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kou HP, Li Y, Song XX et al (2011) Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to the stress in rice (Oryza sativa L.). J Plant Physiol 168:1685–1693. https://doi.org/10.1016/j.jplph.2011.03.017

    Article  CAS  PubMed  Google Scholar 

  107. Zhi P, Chang C (2021) Exploiting epigenetic variations for crop disease resistance improvement. Front Plant Sci 12:692328. https://www.frontiersin.org/article/10.3389/fpls.2021.692328

    Article  PubMed  PubMed Central  Google Scholar 

  108. Zhang K, Zhuang X, Dong Z et al (2021) The dynamics of N6-methyladenine RNA modification in interactions between rice and plant viruses. Genome Biol 22:189. https://doi.org/10.1186/s13059-021-02410-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang TY, Wang ZQ, Hu HC et al (2021) Transcriptome-wide N6-methyladenosine (m6A) profiling of susceptible and resistant wheat varieties reveals the involvement of variety-specific m6A modification involved in virus-host interaction pathways. Front Microbiol 12:656302. https://doi.org/10.3389/fmicb.2021.656302

    Article  PubMed  PubMed Central  Google Scholar 

  110. Du Q, Fang Y, Jiang J et al (2022) Characterization of histone deacetylases and their roles in response to abiotic and PAMPs stresses in Sorghum bicolor. BMC Genomics 23:28. https://doi.org/10.1186/s12864-021-08229-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shuai P, Liang D, Tang S et al (2014) Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in Populus trichocarpa. J Exp Bot 65:4975–4983. https://doi.org/10.1093/jxb/eru256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang C, Tang G, Peng X et al (2018) Long non-coding RNAs of switchgrass (Panicum virgatum L.) in multiple dehydration stresses. BMC Plant Biol 18:79. https://doi.org/10.1186/s12870-018-1288-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang W, Han Z, Guo Q et al (2014) Identification of maize long non-coding RNAs responsive to drought stress. PLoS One 9:e98958. https://doi.org/10.1371/journal.pone.0098958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chung PJ, Jung H, Jeong DH et al (2016) Transcriptome profiling of drought responsive noncoding RNAs and their target genes in rice. BMC Genomics 17:563. https://doi.org/10.1186/s12864-016-2997-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ben Amor B, Wirth S, Merchan F et al (2009) Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Res 19:57–69. https://doi.org/10.1101/gr.080275.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Li S, Yu X, Lei N et al (2017) Genome-wide identification and functional prediction of cold and/or drought-responsive lncRNAs in cassava. Sci Rep 7:45981. https://doi.org/10.1038/srep45981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Qi X, Xie S, Liu Y et al (2013) Genome-wide annotation of genes and noncoding RNAs of foxtail millet in response to simulated drought stress by deep sequencing. Plant Mol Biol 83:459–473. https://doi.org/10.1007/s11103-013-0104-6

    Article  CAS  PubMed  Google Scholar 

  118. Zhao J, He Q, Chen G et al (2016) Regulation of non-coding RNAs in heat stress responses of plants. Front Plant Sci 7:1213. https://www.frontiersin.org/article/10.3389/fpls.2016.01213

    Article  PubMed  PubMed Central  Google Scholar 

  119. Huo C, Zhang B, Wang R (2022) Research progress on plant noncoding RNAs in response to low-temperature stress. Plant Signal Behav 17:2004035. https://doi.org/10.1080/15592324.2021.2004035

    Article  CAS  PubMed  Google Scholar 

  120. Yang B, Tang J, Yu Z et al (2019) Light stress responses and prospects for engineering light stress tolerance in crop plants. J Plant Growth Regul 38:1489–1506. https://doi.org/10.1007/s00344-019-09951-8

    Article  CAS  Google Scholar 

  121. Subburaj S, Ha HJ, Jin Y-T et al (2017) Identification of γ-radiation-responsive microRNAs and their target genes in Tradescantia (BNL clone 4430). J Plant Biol 60:116–128. https://doi.org/10.1007/s12374-016-0433-5

    Article  CAS  Google Scholar 

  122. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019. https://doi.org/10.1105/tpc.104.022830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Boycheva I, Vassileva V, Iantcheva A (2014) Histone acetyltransferases in plant development and plasticity. Curr Genomics 15:28–37. https://doi.org/10.2174/138920291501140306112742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Latrasse D, Benhamed M, Henry Y et al (2008) The MYST histone acetyltransferases are essential for gametophyte development in Arabidopsis. BMC Plant Biol 8:121. https://doi.org/10.1186/1471-2229-8-121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Berr A, Shafiq S, Shen WH (2011) Histone modifications in transcriptional activation during plant development. Biochim Biophys Acta – Gene Regul Mech 1809:567–576. https://doi.org/10.1016/j.bbagrm.2011.07.001

    Article  CAS  Google Scholar 

  126. Casati P, Campi M, Chu F et al (2008) Histone acetylation and chromatin remodeling are required for UV-B–dependent transcriptional activation of regulated genes in maize. Plant Cell 20:827–842. https://doi.org/10.1105/tpc.107.056457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Graindorge S, Cognat V, To Berens PJ et al (2019) Photodamage repair pathways contribute to the accurate maintenance of the DNA methylome landscape upon UV exposure. PLoS Genet 15:e1008476. https://doi.org/10.1371/journal.pgen.1008476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Friedrich T, Faivre L, Bäurle I et al (2019) Chromatin-based mechanisms of temperature memory in plants. Plant Cell Environ 42:762–770. https://doi.org/10.1111/pce.13373

    Article  CAS  PubMed  Google Scholar 

  129. Jaskiewicz M, Conrath U, Peterhänsel C (2011) Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep 12:50–55. https://doi.org/10.1038/embor.2010.186

    Article  CAS  PubMed  Google Scholar 

  130. Bräutigam K, Soolanayakanahally R, Champigny M et al (2017) Sexual epigenetics: gender-specific methylation of a gene in the sex determining region of Populus balsamifera. Sci Rep 7:45388. https://doi.org/10.1038/srep45388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yang L, Perrera V, Saplaoura E et al (2019) m5C methylation guides systemic transport of messenger RNA over graft junctions in plants. Curr Biol 29:2465–2476.e5. https://doi.org/10.1016/j.cub.2019.06.042

    Article  CAS  PubMed  Google Scholar 

  132. Song Y, Ma K, Ci D et al (2013) Sexual dimorphic floral development in dioecious plants revealed by transcriptome, phytohormone, and DNA methylation analysis in Populus tomentosa. Plant Mol Biol 83:559–576. https://doi.org/10.1007/s11103-013-0108-2

    Article  CAS  PubMed  Google Scholar 

  133. Chang YN, Zhu C, Jiang J et al (2020) Epigenetic regulation in plant abiotic stress responses. J Integr Plant Biol 62:563–580. https://doi.org/10.1111/jipb.12901

    Article  CAS  PubMed  Google Scholar 

  134. Ou X, Zhang Y, Xu C et al (2012) Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.). PLoS One 7:e41143. https://doi.org/10.1371/journal.pone.0041143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yamaguchi A, Abe M (2012) Regulation of reproductive development by non-coding RNA in Arabidopsis: to flower or not to flower. J Plant Res 125:693–704. https://doi.org/10.1007/s10265-012-0513-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wang CY, Liu SR, Zhang XY et al (2017) Genome-wide screening and characterization of long non-coding RNAs involved in flowering development of trifoliate orange (Poncirus trifoliata L. Raf.). Sci Rep 7:43226. https://doi.org/10.1038/srep43226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lu D, Zhai J, Xi M (2022) Regulation of DNA methylation during plant endosperm development. Front Genet 13:760690. https://doi.org/10.3389/fgene.2022.760690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gorelick R (2003) Evolution of dioecy and sex chromosomes via methylation driving Muller’s ratchet. Biol J Linn Soc 80:353–368. https://doi.org/10.1046/j.1095-8312.2003.00244.x

    Article  Google Scholar 

  139. Tian L, Fong MP, Wang JJ et al (2005) Reversible histone acetylation and deacetylation mediate genome-wide, promoter-dependent and locus-specific changes in gene expression during plant development. Genetics 169:337–345. https://doi.org/10.1534/genetics.104.033142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Minshull TC, Dickman MJ (2014) Mass spectrometry analysis of histone post translational modifications. Drug Discov Today Dis Models 12:41–48. https://doi.org/10.1016/j.ddmod.2015.03.002

    Article  Google Scholar 

  141. Hayashi-Takanaka Y, Kina Y, Nakamura F et al (2020) Histone modification dynamics as revealed by multicolor immunofluorescence-based single-cell analysis. J Cell Sci 133:jcs243444. https://doi.org/10.1242/jcs.243444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. European Molecular Biology Open Software Suite (EMBOSS) (1999) newcpgseek. https://galaxy-iuc.github.io/emboss-5.0-docs/newcpgseek.html. Accessed 29 Aug 2022

  143. European Molecular Biology Open Software Suite (EMBOSS): (1999) cpgplot. https://galaxy-iuc.github.io/emboss-5.0-docs/cpgplot.html. Accessed 29 Aug 2022

  144. Afgan E, Baker D, Batut B et al (2018) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46:W537–W544. https://doi.org/10.1093/nar/gky379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Li Y, Tollefsbol TO (2011) DNA methylation detection: bisulfite genomic sequencing analysis. Methods Mol Biol 791:11–21. https://doi.org/10.1007/978-1-61779-316-5_2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Rand AC, Jain M, Eizenga JM et al (2017) Mapping DNA methylation with high throughput nanopore sequencing. Nat Methods 14:411–413. https://doi.org/10.1038/nmeth.4189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kurdyukov S, Bullock M (2016) DNA methylation analysis: choosing the right method. Biology (Basel) 5:3. https://doi.org/10.3390/biology5010003

    Article  CAS  PubMed  Google Scholar 

  148. Petell CJ, Loiseau G, Gandy R et al (2017) A refined DNA methylation detection method using MspJI coupled quantitative PCR. Anal Biochem 533:1–9. https://doi.org/10.1016/j.ab.2017.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Yi X, Zhang Z, Ling Y et al (2015) PNRD: a plant non-coding RNA database. Nucleic Acids Res 43:D982–D989. https://doi.org/10.1093/nar/gku1162

    Article  CAS  PubMed  Google Scholar 

  150. Jin J, Lu P, Xu Y et al (2021) PLncDB V2.0: a comprehensive encyclopedia of plant long noncoding RNAs. Nucleic Acids Res 49:D1489–D1495. https://doi.org/10.1093/nar/gkaa910

    Article  CAS  PubMed  Google Scholar 

  151. Guo Z, Kuang Z, Wang Y et al (2020) PmiREN: a comprehensive encyclopedia of plant miRNAs. Nucleic Acids Res 48:D1114–D1121. https://doi.org/10.1093/nar/gkz894

    Article  CAS  PubMed  Google Scholar 

  152. Zhang Z, Yu J, Li D et al (2010) PMRD: plant microRNA database. Nucleic Acids Res 38:D806–D813. https://doi.org/10.1093/nar/gkp818

    Article  CAS  PubMed  Google Scholar 

  153. Liao P, Li S, Cui X et al (2018) A comprehensive review of web-based resources of non-coding RNAs for plant science research. Int J Biol Sci 14:819–832. https://doi.org/10.7150/ijbs.24593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Benesova S, Kubista M, Valihrach L (2021) Small RNA-sequencing: approaches and considerations for miRNA analysis. Diagnostics (Basel) 11:964. https://doi.org/10.3390/diagnostics11060964

    Article  CAS  PubMed  Google Scholar 

  155. Hüttenhofer A, Vogel J (2006) Experimental approaches to identify non-coding RNAs. Nucleic Acids Res 34:635–646. https://doi.org/10.1093/nar/gkj469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Koh HR, Myong S (2018) Single-cell imaging approaches for studying small-RNA-induced gene regulation. Biophys J 115:203–208. https://doi.org/10.1016/j.bpj.2018.05.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Quadruplex forming G-Rich Sequences (QGRS) (2006) QGRS Mapper. https://bioinformatics.ramapo.edu/QGRS/index.php. Accessed 25 Feb 2022

  158. non-B DNA Motif Search Tool (nBMST) (2022) Advanced Biomedical Computing Center (ABCC). https://nonb-abcc.ncifcrf.gov/apps/nBMST/default/. Accessed 25 Feb 2022

  159. Panda D, Saha P, Chaudhuri R et al (2019) A competitive pull-down assay using G-quadruplex DNA linked magnetic nanoparticles to determine specificity of G-quadruplex ligands. Anal Chem 12:7705–7711. https://doi.org/10.1021/acs.analchem.9b00889

    Article  CAS  Google Scholar 

  160. Busto N, Calvo P, Santolaya J et al (2018) Fishing for G-quadruplexes in solution with a perylene diimide derivative labeled with biotins. Chem Eur J 24:11292–11296. https://doi.org/10.1002/chem.201802365

    Article  CAS  PubMed  Google Scholar 

  161. Jamroskovic J, Obi I, Movahedi A et al (2019) Identification of putative G-quadruplex DNA structures in S. pombe genome by quantitative PCR stop assay. DNA Repair 82:102678. https://doi.org/10.1016/j.dnarep.2019.102678

    Article  CAS  PubMed  Google Scholar 

  162. Takahashi H, Nakagawa A, Kojima S et al (2012) Discovery of novel rules for G-quadruplex-forming sequences in plants by using bioinformatics methods. J Biosci Bioeng 114:570–575. https://doi.org/10.1016/j.jbiosc.2012.05.017

    Article  CAS  PubMed  Google Scholar 

  163. Brázda V, Kolomazník J, Lýsek J et al (2019) G4Hunter web application: a web server for G-quadruplex prediction. Bioinformatics 35:3493–3495. https://doi.org/10.1093/bioinformatics/btz087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Yang C, Hu R, Li Q et al (2018) Visualization of parallel G-quadruplexes in cells with a series of new developed bis(4-aminobenzylidene)acetone derivatives. ACS Omega 3:10487–10492. https://doi.org/10.1021/acsomega.8b01190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zheng K, Zhang J, He YD et al (2020) Detection of genomic G-quadruplexes in living cells using a small artificial protein. Nucleic Acids Res 48:11706–11720. https://doi.org/10.1093/nar/gkaa841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Krafcikova M, Hänsel-Hertsch R, Trantirek L et al (2019) In cell NMR spectroscopy: investigation of G-quadruplex structures inside living Xenopus laevis oocytes. Methods Mol Biol 2035:397–405. https://doi.org/10.1007/978-1-4939-9666-7_25

    Article  CAS  PubMed  Google Scholar 

  167. Murat P, Bonnet R, Van der Heyden A et al (2010) Template-assembled synthetic G-quadruplex (TASQ): a useful system for investigating the interactions of ligands with constrained quadruplex topologies. Chemistry 16:6106–6114. https://doi.org/10.1002/chem.200903456

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Czech Science Foundation (GAČR 21-18532S to Adriana Volná, Jakub Nezval, Radomír Pech, and Vladimír Špunda) and the University of Ostrava (SGS11/PřF/2022 to Adriana Volná, Radomír Pech, and Jakub Nezval; SGS10/PřF/2022 to Petr Pečinka). Jiří Červeň, Petr Pečinka and Martin Bartas were supported by the National Agency for Agricultural Research (NAZV) of the Czech Republic grant no. QK1810391 “Utilization of genomic and transcriptomic approaches to create genetic resources and breeding materials of poppy with specific traits.” Participation of Radomír Pech was supported by the Moravian-Silesian Region (RRC/10/2021). Vladimír Špunda was supported by the Ministry of Education, Youth and Sports of the Czech Republic, project “SustES—Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions” (CZ.02.1.01/0.0/0.0/16_019/0000797). Figures were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Červeň .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Volná, A. et al. (2023). Beyond the Primary Structure of Nucleic Acids: Potential Roles of Epigenetics and Noncanonical Structures in the Regulations of Plant Growth and Stress Responses. In: Couée, I. (eds) Plant Abiotic Stress Signaling. Methods in Molecular Biology, vol 2642. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3044-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3044-0_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3043-3

  • Online ISBN: 978-1-0716-3044-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics