Skip to main content

High Throughput Screening of Mitochondrial Bioenergetics in Myoblasts and Differentiated Myotubes

  • Protocol
  • First Online:
Skeletal Muscle Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2640))

Abstract

Skeletal muscles contain stem cells called satellite cells, which are essential for muscle regeneration. The population of satellite cells declines with aging and the incidence of pathological conditions such as muscular dystrophy. There is increasing evidence that metabolic switches and mitochondrial function are critical regulators of cell fate decision (quiescence, activation, differentiation, and self-renewal) during myogenesis. Thus, monitoring and identifying the metabolic profile in live cells using the Seahorse XF Bioanalyzer could provide new insights on the molecular mechanisms governing stem cell dynamics during regeneration and tissue maintenance. Here we described a method to assess mitochondrial respiration (oxygen consumption rate) and glycolysis (ECAR) in primary murine satellite cells, multinucleated myotubes, and C2C12 myoblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fujita R, Yoshioka K, Seko D et al (2018) Zmynd17 controls muscle mitochondrial quality and whole-body metabolism. FASEB J 32:5012–5025

    Article  CAS  PubMed  Google Scholar 

  2. Yoshioka K, Fujita R, Seko D et al (2019) Distinct roles of Zmynd17 and PGC1α in mitochondrial quality control and biogenesis in skeletal muscle. Front Cell Dev Biol 7:330

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen H, Vermulst M, Wang YE et al (2010) Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141:280–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Koves TR, Ussher JR, Noland RC et al (2008) Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 7:45–56

    Article  CAS  PubMed  Google Scholar 

  5. Mootha VK, Lindgren CM, Eriksson K-F et al (2003) PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273

    Article  CAS  PubMed  Google Scholar 

  6. Petersen KF (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300:1140–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Petersen KF, Dufour S, Befroy D et al (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Amati-Bonneau P, Valentino ML, Reynier P et al (2008) OPA1 mutations induce mitochondrial DNA instability and optic atrophy “plus” phenotypes. Brain 131:338–351

    Article  PubMed  Google Scholar 

  9. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93:23–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brack AS, Rando TA (2012) Tissue-specific stem cells: lessons from the skeletal muscle satellite cell. Cell Stem Cell 10:504–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dumont NA, Wang YX, Rudnicki MA (2015) Intrinsic and extrinsic mechanisms regulating satellite cell function. Dev Camb Engl 142:1572–1581

    CAS  Google Scholar 

  13. Rodgers JT, King KY, Brett JO et al (2014) mTORC1 controls the adaptive transition of quiescent stem cells from G0 to GAlert. Nature 510:393–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tang AH, Rando TA (2014) Induction of autophagy supports the bioenergetic demands of quiescent muscle stem cell activation. EMBO J 33:2782–2797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zismanov V, Chichkov V, Colangelo V et al (2016) Phosphorylation of eIF2α is a translational control mechanism regulating muscle stem cell quiescence and self-renewal. Cell Stem Cell 18:79–90

    Article  CAS  PubMed  Google Scholar 

  16. Fujita R, Crist C (2018) Translational control of the myogenic program in developing, regenerating, and diseased skeletal muscle. In: Current topics in developmental biology. Elsevier, pp 67–98

    Google Scholar 

  17. Crist CG, Montarras D, Buckingham M (2012) Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules. Cell Stem Cell 11:118–126

    Article  CAS  PubMed  Google Scholar 

  18. Ryall JG, Dell’Orso S, Derfoul A et al (2015) The NAD+-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 16:171–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ryall JG, Cliff T, Dalton S et al (2015) Metabolic reprogramming of stem cell epigenetics. Cell Stem Cell 17:651–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sala D, Cunningham TJ, Stec MJ et al (2019) The Stat3-Fam3a axis promotes muscle stem cell myogenic lineage progression by inducing mitochondrial respiration. Nat Commun 10:1796

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sin J, Andres AM, Taylor DJR et al (2016) Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts. Autophagy 12:369–380

    Article  CAS  PubMed  Google Scholar 

  22. Khacho M, Clark A, Svoboda DS et al (2016) Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program. Cell Stem Cell 19:232–247

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Kazuo Yamamoto (Nagasaki University, School of Medicine, Nagasaki, Japan) and Dr. Yusuke Ono (Institute of Molecular Embryology and Genetics, Kumamoto University) for technical support. This work was supported by a MEXT Leading Initiative for Excellent Young Researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Fujita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Takeda, K., Takemasa, T., Fujita, R. (2023). High Throughput Screening of Mitochondrial Bioenergetics in Myoblasts and Differentiated Myotubes. In: Asakura, A. (eds) Skeletal Muscle Stem Cells. Methods in Molecular Biology, vol 2640. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3036-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3036-5_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3035-8

  • Online ISBN: 978-1-0716-3036-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics