Skip to main content

Two-Dimensional DNA Origami Lattices Assembled on Lipid Bilayer Membranes

  • Protocol
  • First Online:
DNA and RNA Origami

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2639))

Abstract

Molecular self-assembly has attracted much attention as a method to create novel supramolecular architectures. The scaffolded DNA origami method has enabled the construction of almost arbitrarily shaped DNA nanostructures, which can be further used as components of higher-order architectures. Here, we describe a method to construct and visualize two-dimensional (2D) lattices self-assembled from DNA origami tiles on lipid bilayer membranes. The weak adsorption of DNA origami tiles onto the mica-supported lipid bilayer allows their lateral diffusion along the surface, facilitating interactions among the tiles to assemble and form large 2D lattices. Depending on the design (i.e., shape, size, and interactions with each other) of DNA origami tiles, a variety of 2D lattices made of DNA are constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Seeman NC (1999) DNA engineering and its application to nanotechnology. Trends Biotechnol 17:437–443

    Article  CAS  PubMed  Google Scholar 

  2. Seeman NC (2003) DNA in a material world. Nature 421:427–431

    Article  PubMed  Google Scholar 

  3. Rothemund PW (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    Article  CAS  PubMed  Google Scholar 

  4. Douglas SM, Dietz H, Liedl T, Hogberg B, Graf F, Shih WM (2009) Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459:414–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dietz H, Douglas SM, Shih WM (2009) Folding DNA into twisted and curved nanoscale shapes. Science 325:725–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu W, Zhong H, Wang R, Seeman NC (2011) Crystalline two-dimensional DNA-origami arrays. Angew Chem Int Ed Engl 50:264–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rajendran A, Endo M, Katsuda Y, Hidaka K, Sugiyama H (2011) Programmed two-dimensional self-assembly of multiple DNA origami jigsaw pieces. ACS Nano 5:665–671

    Article  CAS  PubMed  Google Scholar 

  8. Woo S, Rothemund PW (2011) Programmable molecular recognition based on the geometry of DNA nanostructures. Nat Chem 3:620–627

    Article  CAS  PubMed  Google Scholar 

  9. Zhao Z, Liu Y, Yan H (2011) Organizing DNA origami tiles into larger structures using preformed scaffold frames. Nano Lett 11:2997–3002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gerling T, Wagenbauer KF, Neuner AM, Dietz H (2015) Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science 347:1446–1452

    Article  CAS  PubMed  Google Scholar 

  11. Tikhomirov G, Petersen P, Qian L (2017) Programmable disorder in random DNA tilings. Nat Nanotechnol 12:251–259

    Article  CAS  PubMed  Google Scholar 

  12. Sun X, Hyeon Ko S, Zhang C, Ribbe AE, Mao C (2009) Surface-mediated DNA self-assembly. J Am Chem Soc 131:13248–13249

    Article  CAS  PubMed  Google Scholar 

  13. Aghebat Rafat A, Pirzer T, Scheible MB, Kostina A, Simmel FC (2014) Surface-assisted large-scale ordering of DNA origami tiles. Angew Chem Int Ed Engl 53:7665–7668

    Article  CAS  PubMed  Google Scholar 

  14. Woo S, Rothemund PW (2014) Self-assembly of two-dimensional DNA origami lattices using cation-controlled surface diffusion. Nat Commun 5:4889

    Article  CAS  PubMed  Google Scholar 

  15. Johnson-Buck A, Jiang S, Yan H, Walter NG (2014) DNA-cholesterol barges as programmable membrane-exploring agents. ACS Nano 8:5641–5649

    Article  CAS  PubMed  Google Scholar 

  16. Kocabey S, Kempter S, List J, Xing Y, Bae W, Schiffels D, Shih WM, Simmel FC, Liedl T (2015) Membrane-assisted growth of DNA origami nanostructure arrays. ACS Nano 9:3530–3539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Suzuki Y, Endo M, Sugiyama H (2015) Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures. Nat Commun 6:8052

    Article  CAS  PubMed  Google Scholar 

  18. Douglas SM, Marblestone AH, Teerapittayanon S, Vazquez A, Church GM, Shih WM (2009) Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res 37:5001–5006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sato Y, Endo M, Morita M, Takinoue M, Sugiyama H, Murata S, Nomura SM, Suzuki Y (2018) Environment-dependent self-assembly of DNA origami lattices on phase-separated lipid membranes. Adv Mater Interfaces 5:5

    Article  Google Scholar 

  20. Suzuki Y, Sugiyama H, Endo M (2018) Complexing DNA origami frameworks through sequential self-assembly based on directed docking. Angew Chem Int Ed Engl 57:7061–7065

    Article  CAS  PubMed  Google Scholar 

  21. Mingeot-Leclercq MP, Deleu M, Brasseur R, Dufrene YF (2008) Atomic force microscopy of supported lipid bilayers. Nat Protoc 3:1654–1659

    Article  PubMed  Google Scholar 

  22. Uchihashi T, Kodera N, Ando T (2012) Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy. Nat Protoc 7:1193–1206

    Article  CAS  PubMed  Google Scholar 

  23. Mengistu DH, Bohinc K, May S (2009) Binding of DNA to zwitterionic lipid layers mediated by divalent cations. J Phys Chem B 113:12277–12282

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (KAKENHI; grant numbers 18 K19831 and 19H04201 to Y.S., 16H06356 to H.S., and 18KK0139 to M.E.). Financial support from the Uehara Memorial Foundation and the Nakatani Foundation to M.E. are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Endo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Suzuki, Y., Sugiyama, H., Endo, M. (2023). Two-Dimensional DNA Origami Lattices Assembled on Lipid Bilayer Membranes. In: Valero, J. (eds) DNA and RNA Origami. Methods in Molecular Biology, vol 2639. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3028-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3028-0_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3027-3

  • Online ISBN: 978-1-0716-3028-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics