Skip to main content

High-Throughput Association Mapping in Brassica napus L.: Methods and Applications

  • Protocol
  • First Online:
Plant Genotyping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2638))

Abstract

Oil seed rape (Braasica napus L.) is ranked second among oil seed crops cultivated globally for edible oil for human, and seed cake for animal consumption. Recent genetic and genomics advancements highlighted the diversity that exists within B. napus, which is largely discovered using the most promising genetic markers called single nucleotide polymorphism (SNP). Their calling rate is also enhanced to ~100 folds after the continuous advancements in the next generation sequencing (NGS) technologies. As the high throughput of NGS resulted in multi-Giga bases data, the detailed quality control (QC) prior to downstream analyses is a pre-requisite. It mainly involved the removal of false positives, missing proportions, filtering of low-quality SNPs, and adjustments of minor-allele frequency and heterozygosity. After marker-trait association, for conformation of target SNPs, validations of SNPs can be performed using various methods, especially allele-specific PCR assay-based methods have been utilized for SNP genotyping of genes targeting agronomic traits and somaclonal variations occurred during transgenic studies. In the present study, the authors mainly argue on the genotypic progress, and pipelines/methods that are being used for detection, calling, filtering, and validation of SNPs. Also, insight is provided into the application of SNPs in linkage and association mapping, including QTL mapping and genome-wide association studies targeting mainly developmental traits related to the root system and plant architecture, flowering time, silique, and oil quality. Briefly, the present study provides the recent information and recommendations on the SNP genotyping methods and its applications, which can be useful for marker-assisted breeding in B. napus and other crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X et al (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345(6199):950–953. https://doi.org/10.1126/science.1253435

    Article  CAS  Google Scholar 

  2. Mason AS, Snowdon RJ (2016) Oilseed rape: learning about ancient and recent polyploid evolution from a recent crop species. Plant Biol 18:883–892. https://doi.org/10.1111/plb.12462

    Article  CAS  Google Scholar 

  3. Gill RA, Scossa F, King GJ, Golicz AA, Tong C, Snowdon RJ et al (2021) On the role of transposable elements in the regulation of gene expression and subgenomic interactions in crop genomes. Crit Rev Plant Sci 40:157–189. https://doi.org/10.1080/07352689.2021.1920731

    Article  CAS  Google Scholar 

  4. Zou J, Mao L, Qiu J, Wang M, Jia L, Wu D et al (2019) Genome-wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed. Plant Biotechnol J 17:1998–2010. https://doi.org/10.1111/pbi.13115

    Article  CAS  Google Scholar 

  5. Song JM, Guan Z, Hu J, Guo C, Yang Z, Wang S et al (2020) Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat Plants 6:34–45. https://doi.org/10.1038/s41477-019-0577-7

    Article  CAS  Google Scholar 

  6. Ibrahim S, Li K, Ahmad N, Kuang L, Sadau SB, Tian Z et al (2021) Genetic dissection of mature root characteristics by genome-wide association studies in rapeseed (Brassica napus L.). Plants 10:2569. https://doi.org/10.3390/plants10122569

    Article  Google Scholar 

  7. Kuang L, Ahmad N, Su B, Huang L, Li K, Wang H et al (2022) Discovery of genomic regions and candidate genes controlling root development using a recombinant inbred line population in rapeseed (Brassica napus L.). Int J Mol Sci 23:4781. https://doi.org/10.3390/ijms23094781

    Article  CAS  Google Scholar 

  8. Wei D, Cui Y, Mei J, Qian L, Lu K, Wang ZM et al (2019) Genome-wide identification of loci affecting seed glucosinolate contents in Brassica napus L. J Integr Plant Biol 61:611–623. https://doi.org/10.1111/jipb.12717

    Article  CAS  Google Scholar 

  9. Zhao Q, Wu J, Cai G, Yang Q, Shahid M, Fan C et al (2019) A novel quantitative trait locus on chromosome A9 controlling oleic acid content in Brassica napus. Plant Biotechnol J 17:2313–2324. https://doi.org/10.1111/pbi.13142

    Article  CAS  Google Scholar 

  10. Wang T, Wei L, Wang J, Xie L, Li YY, Ran S et al (2020) Integrating GWAS, linkage mapping and gene expression analyses reveals the genetic control of growth period traits in rapeseed (Brassica napus L.). Biotechnol Biofuels 13:134. https://doi.org/10.1186/s13068-020-01774-0

    Article  CAS  Google Scholar 

  11. Bin Y, Wei C, Chaozhi M, Tingdong F, Jinxing T (2006) Mapping of quantitative trait loci for yield and yield components in Brassica napus L. Acta Agron Sin 32:676–682

    Google Scholar 

  12. Bennett EJ, Roberts JA, Wagstaff C (2011) The role of the pod in seed development: strategies for manipulating yield. New Phytol 190:838–853. https://doi.org/10.1111/j.1469-8137.2011.03714.x

    Article  Google Scholar 

  13. Clarke J, Simpson G (1978) Influence of irrigation and seeding rates on yield and yield components of Brassica napus cv. Tower. Can J Plant Sci 58:731–737

    Article  Google Scholar 

  14. Tuncturk M, Çiftçi V (2007) Relationships between yield and some yield components in rapeseed (Brassica napus ssp. oleifera L.) cultivars by using correlation and path analysis. Pak J Bot 39:81–84

    Google Scholar 

  15. Chen B, Xu K, Li J, Li F, Qiao J, Li H et al (2014) Evaluation of yield and agronomic traits and their genetic variation in 488 global collections of Brassica napus L. Genet Resour Crop Evol 61:979–999. https://doi.org/10.1007/s10722-014-0091-8

    Article  CAS  Google Scholar 

  16. Zheng M, Peng C, Liu H, Tang M, Yang H, Li X et al (2017) Genome-wide association study reveals candidate genes for control of plant height, branch initiation height and branch number in rapeseed (Brassica napus L.). Front Plant Sci 8:1246. https://doi.org/10.3389/fpls.2017.01246

    Article  Google Scholar 

  17. Xing S, Dong H, Yang L, Huang D, Zheng F, Cui Y et al (2021) Both overlapping and independent loci underlie seed number per pod and seed weight in Brassica napus by comparative quantitative trait loci analysis. Mol Breed 41:41. https://doi.org/10.1007/s11032-021-01232-1

    Article  CAS  Google Scholar 

  18. Tang S, Liu DX, Lu S, Yu L, Li Y, Lin S et al (2020) Development and screening of EMS mutants with altered seed oil content or fatty acid composition in Brassica napus. Plant J 104:1410–1422. https://doi.org/10.1111/tpj.15003

    Article  CAS  Google Scholar 

  19. Kuznetsova A, Brockhoff P, Christensen R (2017) LmerTest package: tests in linear mixed effects models. J Stat Softw 82:1–26. https://doi.org/10.18637/jss.v082.i13

    Article  Google Scholar 

  20. Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Perret D et al (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523. https://doi.org/10.1007/s00122-005-0080-6

    Article  CAS  Google Scholar 

  21. Cai G, Yang Q, Yang Q, Zhao Z, Chen H, Wu J et al (2012) Identification of candidate genes of QTLs for seed weight in Brassica napus through comparative mapping among Arabidopsis and Brassica species. BMC Genet 13:105. https://doi.org/10.1186/1471-2156-13-105

    Article  CAS  Google Scholar 

  22. Xu J, Qian X, Wang X, Li R, Cheng X, Yang Y et al (2010) Construction of an integrated genetic linkage map for the A genome of Brassica napus using SSR markers derived from sequenced BACs in B. rapa. BMC Genomics 11:594. https://doi.org/10.1186/1471-2164-11-594

    Article  CAS  Google Scholar 

  23. Cheng X, Xu J, Xia S, Gu J, Yang Y, Fu J et al (2009) Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet 118:1121–1131. https://doi.org/10.1007/s00122-009-0967-8

    Article  CAS  Google Scholar 

  24. Fan C, Cai G, Qin J, Li Q, Yang M, Wu J et al (2010) Mapping of quantitative trait loci and development of allele-specific markers for seed weight in Brassica napus. Theor Appl Genet 121:1289–1301. https://doi.org/10.1007/s00122-010-1388-4

    Article  CAS  Google Scholar 

  25. Wei D, Mei J, Fu Y, Disi JO, Li J, Qian W (2014) Quantitative trait loci analyses for resistance to Sclerotinia sclerotiorum and flowering time in Brassica napus. Mol Breed 34:1797–1804. https://doi.org/10.1007/s11032-014-0139-7

    Article  CAS  Google Scholar 

  26. Zurneng T, Yunchang L, Oiong H (2007) Heterosis prediction based on genetic distance estimated by molecular markers in rapeseed. Chin J Oil Crop Sci 29:20–26

    Google Scholar 

  27. Panjabi P, Jagannath A, Bisht NC, Padmaja KL, Sharma S, Gupta V et al (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: Homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics 9:113. https://doi.org/10.1186/1471-2164-9-113

    Article  CAS  Google Scholar 

  28. Vos P, Hogers R, Bleeker M, Reijans M, Lee T, Hornes M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414. https://doi.org/10.1093/nar/23.21.4407

    Article  CAS  Google Scholar 

  29. Liu H, Du D, Guo S, Xiao L, Zhao Z, Zhao Z et al (2016) QTL analysis and the development of closely linked markers for days to flowering in spring oilseed rape (Brassica napus L.). Mol Breed 36:52. https://doi.org/10.1007/s11032-016-0477-8

    Article  CAS  Google Scholar 

  30. Trick M, Long Y, Meng J, Bancroft I (2009) Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J 7:334–346. https://doi.org/10.1111/j.1467-7652.2008.00396.x

    Article  CAS  Google Scholar 

  31. Fletcher RS, Mullen JL, Heiliger A, McKay JK (2015) QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus. J Exp Bot 66:245–256. https://doi.org/10.1093/jxb/eru423

    Article  CAS  Google Scholar 

  32. Kosambi DD (2016) The estimation of map distances from recombination values. In: Ramaswamy R, Kosambi DD (eds) Selected works in mathematics and statistics. Springer, New Delhi, pp 125–130. https://doi.org/10.1007/978-81-322-3676-4_16

    Chapter  Google Scholar 

  33. Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78. https://doi.org/10.1093/jhered/93.1.77

    Article  CAS  Google Scholar 

  34. Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890. https://doi.org/10.1093/bioinformatics/btg112

    Article  CAS  Google Scholar 

  35. Broman KW, Sen S (2009) A guide to QTL mapping with R/qtl. Springer, New York, 400 pp. https://doi.org/10.1007/978-0-387-92125-9

    Book  Google Scholar 

  36. Wang S (2005) Windows QTL cartographer 2.5. https://brcwebportal.cos.ncsu.edu/qtlcart

  37. Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199. https://doi.org/10.1093/genetics/121.1.185

    Article  CAS  Google Scholar 

  38. Doerge RW, Churchill G (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294. https://doi.org/10.1093/genetics/142.1.285

    Article  CAS  Google Scholar 

  39. Chen G, Geng J, Rahman M, Liu X, Tu J, Fu T et al (2010) Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus). Euphytica 175:161–174. https://doi.org/10.1007/s10681-010-0144-9

    Article  CAS  Google Scholar 

  40. Yang J, Zhu J, Williams RW (2007) Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23:1527–1536. https://doi.org/10.1093/bioinformatics/btm143

    Article  CAS  Google Scholar 

  41. Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473. https://doi.org/10.1093/genetics/155.1.463

    Article  CAS  Google Scholar 

  42. Sun YN, Pan JB, Shi X, Du XL, Wu Q, Qi ZM et al (2012) Multi-environment mapping and meta-analysis of 100-seed weight in soybean. Mol Biol Rep 39:9435–9443. https://doi.org/10.1007/s11033-012-1808-4

    Article  CAS  Google Scholar 

  43. Lu K, Wei L, Li X, Wang Y, Wu J, Liu M et al (2019) Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat Commun 10:1154. https://doi.org/10.1038/s41467-019-09134-9

    Article  CAS  Google Scholar 

  44. Lenth RV (2016) Least-squares means: the R package ismeans. J Stat Software 69:1–33. https://doi.org/10.18637/jss.v069.i01

    Article  Google Scholar 

  45. Chen Y, Chen Y, Shi C, Huang Z, Zhang Y, Li S et al (2018) SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 7:gix120. https://doi.org/10.1093/gigascience/gix120

    Article  CAS  Google Scholar 

  46. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37:907–915. https://doi.org/10.1038/s41587-019-0201-4; Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760

  47. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al (2010) The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. https://doi.org/10.1101/gr.107524.110

    Article  CAS  Google Scholar 

  48. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB et al (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42:348–354. https://doi.org/10.1038/ng.548

    Article  CAS  Google Scholar 

  49. Cai D, Xiao Y, Yang W, Ye W, Wang B, Younas M et al (2014) Association mapping of six yield-related traits in rapeseed (Brassica napus L.). Theor Appl Genet 127:85–96. https://doi.org/10.1007/s00122-013-2203-9

    Article  CAS  Google Scholar 

  50. Li F, Chen B, Xu K, Wu J, Song W, Bancroft I et al (2014) Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA Res 21:355–367. https://doi.org/10.1093/dnares/dsu002

    Article  CAS  Google Scholar 

  51. Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N et al (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45:1097–1102. https://doi.org/10.1038/ng.2725

    Article  CAS  Google Scholar 

  52. Giehl RF, Gruber BD, von Wirén N (2014) It’s time to make changes: modulation of root system architecture by nutrient signals. J Exp Bot 65:769–778. https://doi.org/10.1093/jxb/ert421

    Article  CAS  Google Scholar 

  53. Roychoudhry S, Kepinski S (2015) Shoot and root branch growth angle control – wonderfulness of lateralness. Curr Opin Plant Biol 23:124–131. https://doi.org/10.1016/j.pbi.2014.12.004

    Article  Google Scholar 

  54. Chen YS, Lo SF, Sun PK, Lu CA, Ho THD, Yu SM (2015) A late embryogenesis abundant protein HVA1 regulated by an inducible promoter enhances root growth and abiotic stress tolerance in rice without yield penalty. Plant Biotechnol J 13:105–116. https://doi.org/10.1111/pbi.12241

    Article  CAS  Google Scholar 

  55. Arifuzzaman M, Oladzadabbasabadi A, McClean P, Rahman M (2019) Shovelomics for phenotyping root architectural traits of rapeseed/canola (Brassica napus L.) and genome-wide association mapping. Mol Genet Genomics 294:985–1000. https://doi.org/10.1007/s00438-019-01563-x

    Article  CAS  Google Scholar 

  56. Arifuzzaman M, Rahman M (2020) Genome wide association mapping and candidate gene mining for root architectural traits in rapeseed/canola (Brassica napus L.) at late growth stage. Euphytica 216:164. https://doi.org/10.1007/s10681-020-02700-z

    Article  CAS  Google Scholar 

  57. Kiran A, Wakeel A, Snowdon R, Friedt W (2019) Genetic dissection of root architectural traits by QTL and genome-wide association mapping in rapeseed (Brassica napus). Plant Breed 138:184–192. https://doi.org/10.1111/pbr.12665

    Article  CAS  Google Scholar 

  58. Li K, Wang J, Kuang L, Tian Z, Wang X, Dun X et al (2021) Genome-wide association study and transcriptome analysis reveal key genes affecting root growth dynamics in rapeseed. Biotechnol Biofuels 14:178. https://doi.org/10.1186/s13068-021-02032-7

    Article  CAS  Google Scholar 

  59. Sun C, Wang B, Yan L, Hu K, Liu S, Zhou Y et al (2016) Genome-wide association study provides insight into the genetic control of plant height in rapeseed (Brassica napus L.). Front Plant Sci 7:1102. https://doi.org/10.3389/fpls.2016.01102

    Article  Google Scholar 

  60. Dong Z, Alam MK, Xie M, Yang L, Liu J, Helal M et al (2021) Mapping of a major QTL controlling plant height using a high-density genetic map and QTL-seq methods based on whole-genome resequencing in Brassica napus. G3 11:jkab118. https://doi.org/10.1093/g3journal/jkab118

    Article  CAS  Google Scholar 

  61. Shen Y, Yang Y, Xu E, Ge X, Xiang Y, Li Z (2018) Novel and major QTL for branch angle detected by using DH population from an exotic introgression in rapeseed (Brassica napus L.). Theor Appl Genet 131:67–78. https://doi.org/10.1007/s00122-017-2986-1

    Article  Google Scholar 

  62. Li H, Cheng X, Zhang L, Hu J, Zhang F, Chen B et al (2018) An integration of genome-wide association study and gene co-expression network analysis identifies candidate genes of stem lodging-related traits in Brassica napus. Front Plant Sci 9:796. https://doi.org/10.3389/fpls.2018.00796

    Article  Google Scholar 

  63. Xu L, Hu K, Zhang Z, Guan C, Chen S, Hua W et al (2016) Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Res 23:43–52. https://doi.org/10.1093/dnares/dsv035

    Article  CAS  Google Scholar 

  64. Jian H, Zhang A, Ma J, Wang T, Yang B, Shuang LS et al (2019) Joint QTL mapping and transcriptome sequencing analysis reveal candidate flowering time genes in Brassica napus L. BMC Genomics 20:21. https://doi.org/10.1186/s12864-018-5356-8

    Article  Google Scholar 

  65. Helal M, Gill RA, Tang M, Yang L, Hu M, Yang L et al (2021) SNP- and haplotype-based GWAS of flowering-related traits in Brassica napus. Plan Theory 10:2475. https://doi.org/10.3390/plants10112475

    Article  CAS  Google Scholar 

  66. Yang S, Chen S, Zhang K, Li L, Yin Y, Gill RA et al (2018) A high-density genetic map of an allohexaploid Brassica doubled haploid population reveals quantitative trait loci for pollen viability and fertility. Front Plant Sci 9:1161. https://doi.org/10.3389/fpls.2018.01161

    Article  Google Scholar 

  67. Shi J, Zhan J, Yang Y, Ye J, Huang S, Li R et al (2015) Linkage and regional association analysis reveal two new tightly-linked major-QTLs for pod number and seed number per pod in rapeseed (Brassica napus L.). Sci Rep 5:14481. https://doi.org/10.1038/srep14481

    Article  CAS  Google Scholar 

  68. Zhao X, Yu K, Pang C, Wu X, Shi R, Sun C et al (2021) QTL analysis of five silique-related traits in Brassica napus L. across multiple environments. Front Plant Sci 12:766271. https://doi.org/10.3389/fpls.2021.766271

    Article  Google Scholar 

  69. Wang H, Yan M, Xiong M, Wang P, Liu Y, Xin Q et al (2020) Genetic dissection of thousand-seed weight and fine mapping of cqSW. A03-2 via linkage and association analysis in rapeseed (Brassica napus L.). Theor Appl Genet 133:1321–1335. https://doi.org/10.1007/s00122-020-03553-9

    Article  CAS  Google Scholar 

  70. Nesi N, Delourme R, Brégeon M, Falentin C, Renard M (2008) Genetic and molecular approaches to improve nutritional value of Brassica napus L. seed. C R Biol 331:763–771. https://doi.org/10.1016/j.crvi.2008.07.018

    Article  CAS  Google Scholar 

  71. Ecke W, Uzunova M, Weissleder K (1995) Mapping the genome of rapeseed (Brassica napus L.). II. Localization of genes controlling erucic acid synthesis and seed oil content. Theor Appl Genet 91:972–977. https://doi.org/10.1007/BF00223908

    Article  CAS  Google Scholar 

  72. Barret P, Delourme R, Renard M, Domergue F, Lessire R, Delseny M et al (1998) A rapeseed FAE1 gene is linked to the E1 locus associated with variation in the content of erucic acid. Theor Appl Genet 96:177–186. https://doi.org/10.1007/s001220050725

    Article  CAS  Google Scholar 

  73. Fourmann M, Barret P, Renard M, Pelletier G, Delourme R, Brunel D (1998) The two genes homologous to Arabidopsis FAE1 co-segregate with the two loci governing erucic acid content in Brassica napus. Theor Appl Genet 96:852–858. https://doi.org/10.1007/s001220050812

    Article  CAS  Google Scholar 

  74. Wu G, Wu Y, Xiao L, Li X, Lu C (2008) Zero erucic acid trait of rapeseed (Brassica napus L.) results from a deletion of four base pairs in the fatty acid elongase 1 gene. Theor Appl Genet 116:491–499. https://doi.org/10.1007/s00122-007-0685-z

    Article  CAS  Google Scholar 

  75. Xiao Z, Zhang C, Tang F, Yang B, Zhang L, Liu J et al (2019) Identification of candidate genes controlling oil content by combination of genome-wide association and transcriptome analysis in the oilseed crop Brassica napus. Biotechnol Biofuels 12:216. https://doi.org/10.1186/s13068-019-1557-x

    Article  CAS  Google Scholar 

  76. Mithen R (1992) Leaf glucosinolate profiles and their relationship to pest and disease resistance in oilseed rape. Euphytica 63:71–83. https://doi.org/10.1007/BF00023913

    Article  CAS  Google Scholar 

  77. Li Y, Kiddle G, Bennett R, Doughty K, Wallsgrove R (1999) Variation in the glucosinolate content of vegetative tissues of Chinese lines of Brassica napus L. Ann Appl Biol 134:131–136. https://doi.org/10.1111/j.1744-7348.1999.tb05245.x

    Article  CAS  Google Scholar 

  78. Harper AL, Trick M, Higgins J, Fraser F, Clissold L, Wells R et al (2012) Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nat Biotechnol 30:798–802. https://doi.org/10.1038/nbt.2302

    Article  CAS  Google Scholar 

  79. Wang X, Long Y, Wang N, Zou J, Ding G, Broadley MR et al (2017) Breeding histories and selection criteria for oilseed rape in Europe and China identified by genome wide pedigree dissection. Sci Rep 7:1916. https://doi.org/10.1038/s41598-017-02188-z

    Article  CAS  Google Scholar 

  80. Hussain Q, Zhan J, Liang H, Wang X, Liu G, Shi J et al (2022) Key genes and mechanisms underlying natural variation of silique length in oilseed rape (Brassica napus L.) germplasm. Crop J 10:617–626. https://doi.org/10.1016/j.cj.2021.08.010

    Article  Google Scholar 

  81. Tang M, Zhang Y, Liu Y, Tong C, Cheng X, Zhu W et al (2019) Mapping loci controlling fatty acid profiles, oil and protein content by genome-wide association study in Brassica napus. Crop J 7:217–226. https://doi.org/10.1016/j.cj.2018.10.007

    Article  Google Scholar 

  82. Qu C, Jia L, Fu F, Zhao H, Lu K, Wei L et al (2017) Genome-wide association mapping and identification of candidate genes for fatty acid composition in Brassica napus L. using SNP markers. BMC Genomics 18:232. https://doi.org/10.1186/s12864-017-3607-8

    Article  CAS  Google Scholar 

  83. Panchy N, Lehti-Shiu M, Shiu SH (2016) Evolution of gene duplication in plants. Plant Physiol 171:2294–2316. https://doi.org/10.1104/pp.16.00523

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The funding for RAG was supported by the National Natural Science Foundation of China (31950410560).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafaqat Ali Gill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gill, R.A., Helal, M.M.U., Tang, M., Hu, M., Tong, C., Liu, S. (2023). High-Throughput Association Mapping in Brassica napus L.: Methods and Applications. In: Shavrukov, Y. (eds) Plant Genotyping. Methods in Molecular Biology, vol 2638. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3024-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3024-2_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3023-5

  • Online ISBN: 978-1-0716-3024-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics