Skip to main content

ASIS-Seq: Transgene Insertion Site Mapping by Nanopore Adaptive Sampling

  • Protocol
  • First Online:
Transgenesis

Abstract

Generation of transgenic mice by direct microinjection of foreign DNA into fertilized ova has become a routine technique in biomedical research. It remains an essential tool for studying gene expression, developmental biology, genetic disease models, and their therapies. However, the random integration of foreign DNA into the host genome that is inherent to this technology can lead to confounding effects associated with insertional mutagenesis and transgene silencing. Locations of most transgenic lines remain unknown because the methods are often burdensome (Nicholls et al., G3: Genes Genomes Genetics 9:1481–1486, 2019) or have limitations (Goodwin et al., Genome Research 29:494–505, 2019). Here, we present a method that we call Adaptive Sampling Insertion Site Sequencing (ASIS-Seq) to locate transgene integration sites using targeted sequencing on Oxford Nanopore Technologies’ (ONT) sequencers. ASIS-Seq requires only about 3 ug of genomic DNA, 3 hours of hands-on sample preparation time, and 3 days of sequencing time to locate transgenes in a host genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gordon JW, Ruddle FH (1981) Integration and stable germ line transmission of genes injected into mouse Pronuclei. Science 214:1244–1246

    CAS  PubMed  Google Scholar 

  2. Fielder TJ, Barrios L, Montoliu L (2010) A survey to establish performance standards for the production of transgenic mice. Transgenic Res 19:675–681

    CAS  PubMed  Google Scholar 

  3. Hammer RE et al (1987) The rat elastase I regulatory element is an enhancer that directs correct cell specificity and developmental onset of expression in transgenic mice. Mol Cell Biol 8:2956–2967

    Google Scholar 

  4. Petitclerc D et al (1995) The effect of various introns and transcription terminators on the efficiency of expression vectors in various cultured cell lines and in the mammary gland of transgenic mice. Biotechnol 40:169–178

    CAS  Google Scholar 

  5. Schedl A et al (1993) A yeast artificial chromosome covering the tyrosinase gene confers copy number-dependent expression in transgenic mice. Nature 362:258–256

    CAS  PubMed  Google Scholar 

  6. Ioannou PA et al (1994) A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nat Genet 6:84–89

    CAS  PubMed  Google Scholar 

  7. Yang XW, Model P, Heintz N (1997) Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat Biotech 15:859–865

    CAS  Google Scholar 

  8. Giraldo P, Montoliu L (2001) Size matters: use of YACs BACs and PACs in transgenic animals. Transgenic Res 10:83–103

    CAS  PubMed  Google Scholar 

  9. Brinster RL et al (1985) Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc Nail Acad Sci USA 82:4438–4442

    CAS  Google Scholar 

  10. Hirabayashi M et al (2001) A comparative study on the integration of exogenous DNA into mouse rat rabbit and pig genomes. Exp Anim 50:125–131

    CAS  PubMed  Google Scholar 

  11. Palmiter RD, Brinster RL (1985) Transgenic mice. Cell 41:343–345

    CAS  PubMed  Google Scholar 

  12. Garrick D et al (1998) Repeat-induced gene silencing in mammals. Nat Genet 18:56–59

    CAS  PubMed  Google Scholar 

  13. Mátés L et al (2009) Molecular evolution of a novel hyperactive sleeping beauty transposase enables robust stable gene transfer in vertebrates. Nat Genetic 41:53–61

    Google Scholar 

  14. Ding S et al (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122:473–483

    CAS  PubMed  Google Scholar 

  15. Katter K et al (2013) Transposon-mediated transgenesis transgenic rescue and tissue-specific gene expression in rodents and rabbits. FASEB J 27:930–941

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Li MA et al (2011) Mobilization of giant piggyBac transposons in the mouse genome. Nucleic Acids Res 39:e148

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Durkin ME et al (2001) Integration of a c-myc transgene results in disruption of the mouse Gtf2ird1 gene the homologue of the human GTF2IRD1 gene hemizygously deleted in Williams-Beuren Syndrome. Genomics 73:20–27

    CAS  PubMed  Google Scholar 

  18. Mukai HY et al (2006) Transgene insertion in proximity to the c-myb gene disrupts erythroid-megakaryocytic lineage bifurcation. Mol Cell Biol 26:7953–7965

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yong CSM et al (2015) Embryonic lethality in homozygous human Her-2 transgenic mice due to disruption of the Pds5b gene. PLoS One 10:e0136817

    PubMed  PubMed Central  Google Scholar 

  20. Galvan DL et al (2009) Genome-wide mapping of piggybac transposon integrations in primary human T cells. J Immunother 32:837–844

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Li MA et al (2013) The piggyBac transposon displays local and distant reintegration preferences and can cause mutations at noncanonical integration. Sites Mol Cell Biol 33:1317–1330

    CAS  PubMed  Google Scholar 

  22. Saha S et al (2015) Evaluating the potential for undesired genomic effects of the piggyBac transposon system in human cells. Nucleic Acids Res 43:1770–1782

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Goodwin LO et al (2019) Large-scale discovery of mouse transgenic integration sites reveals frequent structural variation and insertional mutagenesis. Genome Res 29:494–505

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Nicholls PK et al (2019) Locating and characterizing a transgene integration site by nanopore sequencing. G3: Genes Genomes Genetics 9:1481–1486

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kulnane LS et al (2002) Rapid and efficient detection of transgene homozygosity by FISH of mouse fibroblasts. Mamm Genome 13:223–226

    CAS  PubMed  Google Scholar 

  26. Nakanishi T et al (2002) FISH analysis of 142 EGFP transgene integration sites into the mouse genome. Genomics 80:564–574

    CAS  PubMed  Google Scholar 

  27. Ohigashi I et al (2010) Identification of the transgenic integration site in immunodeficient tgσ26 human CD3σ transgenic mice. PLoS One 5:e14391

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Liang Z et al (2008) Identifying and genotyping transgene integration loci. Transgenic Res 17:979–983

    CAS  PubMed  Google Scholar 

  29. Haraguchi S, Nakagawara A (2009) A simple PCR method for rapid genotype analysis of the TH-MYCN transgenic mouse. PLoS One 4:e6902

    PubMed  PubMed Central  Google Scholar 

  30. Bryda EC, Bauer BA (2010) A restriction enzyme-PCR-based technique to determine transgene insertion sites. Methods Mol Biol 597:287–299

    CAS  PubMed  Google Scholar 

  31. Ji Y et al (2014) Identification of the genomic insertion site of Pmel-1 TCR α and β transgenes by next-generation sequencing. PLoS One 9:e96650

    PubMed  PubMed Central  Google Scholar 

  32. Dubose AJ et al (2013) Use of microarray hybrid capture and next-generation sequencing to identify the anatomy of a transgene. Nucleic Acids Res 41:e70

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Cain-Hom C et al (2017) Efficient mapping of transgene integration sites and local structural changes in Cre transgenic mice using targeted locus amplification. Nucleic Acids Res 45:e62

    CAS  PubMed  PubMed Central  Google Scholar 

  34. de Vree PJP et al (2014) Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping. Nat Biotech 32:1019–1025

    Google Scholar 

  35. Kovaka S et al (2021) Targeted nanopore sequencing by real-time mapping of raw electrical signal with UNCALLED. Nat Biotech 39:431–441

    CAS  Google Scholar 

  36. Payne A et al (2021) Readfish enables targeted nanopore sequencing of gigabase-sized genomes. Nat Biotech 39:442–450

    CAS  Google Scholar 

  37. Pease S, Saunders TL (eds) (2011) Advanced protocols for animal transgenesis. Springer, Berlin, Heidelberg

    Google Scholar 

  38. Hofker M, van Deursen J (eds) (2011) Transgenic mouse methods and protocols. Humana Press, Totowa, NJ

    Google Scholar 

  39. Wang W et al (2008) Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proc Natl Acad Sci U S A 105:9290–9295

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Johansson T et al (2010) Building a zoo of mice for genetic analyses: a comprehensive protocol for the rapid generation of BAC transgenic mice. Genesis 48:264–280

    CAS  PubMed  Google Scholar 

  41. Gong S, Kus L, Heintz N (2010) Rapid bacterial artificial chromosome modification for large-scale mouse transgenesis. Nat Protoc 5:1678–1696

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Beermann F et al (1993) Perinatal activation of a tyrosine aminotransferase fusion gene does not occur in albino lethal mice. Mech Dev 42:59–65

    CAS  PubMed  Google Scholar 

  43. Martin S et al (2022) Nanopore adaptive sampling: a tool for enrichment of low abundance species in metagenomic samples. Genome Biol 23:11

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merone Roose-Girma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yu, C. et al. (2023). ASIS-Seq: Transgene Insertion Site Mapping by Nanopore Adaptive Sampling. In: Saunders, T.L. (eds) Transgenesis. Methods in Molecular Biology, vol 2631. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2990-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2990-1_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2989-5

  • Online ISBN: 978-1-0716-2990-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics