Skip to main content

Statistical Analysis in ChIP-seq-Related Applications

  • Protocol
  • First Online:
Statistical Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2629))

  • 2024 Accesses

Abstract

Chromatin immunoprecipitation sequencing (ChIP-seq) has been widely performed to identify protein binding information along the genome. The sequencing protocol is quite flexible and mature to measure different types of protein binding as long as sequencing parameters are properly tailored to accommodate protein features. Two distinct types of protein binding are point-source-like binding by transcription factors and diffused-distribution binding by histone modifications. Consequently, statistical approaches have been proposed to address ChIP-seq-related questions according to different protein features. In this chapter, we briefly summarize statistical principles, approaches, and tools that are widely implemented in modeling ChIP-seq data, from raw data quality control to final result reporting. We discuss the key solutions in addressing eight routine questions in ChIP-seq applications. We also include discussion on approaches fitting unique data features in different ChIP-seq types. We hope this chapter will serve as a brief guide, especially for ChIP-seq beginners, to provide them with a high-level overview to understand and design processing plans for their ChIP-seq experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316(5830):1497–1502. https://doi.org/10.1126/science.1141319

    Article  CAS  PubMed  Google Scholar 

  2. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837. https://doi.org/10.1016/j.cell.2007.05.009

    Article  CAS  PubMed  Google Scholar 

  3. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153):553–560. https://doi.org/10.1038/nature06008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rhee HS, Pugh BF (2011) Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell 147(6):1408–1419. https://doi.org/10.1016/j.cell.2011.11.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Skene PJ, Henikoff S (2017) An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. elife 6. https://doi.org/10.7554/eLife.21856

  6. Kaya-Okur HS, Wu SJ, Codomo CA, Pledger ES, Bryson TD, Henikoff JG, Ahmad K, Henikoff S (2019) CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun 10(1):1930. https://doi.org/10.1038/s41467-019-09982-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Consortium EP (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74. https://doi.org/10.1038/nature11247

    Article  CAS  Google Scholar 

  8. Jung YL, Luquette LJ, Ho JW, Ferrari F, Tolstorukov M, Minoda A, Issner R, Epstein CB, Karpen GH, Kuroda MI, Park PJ (2014) Impact of sequencing depth in ChIP-seq experiments. Nucleic Acids Res 42(9):e74. https://doi.org/10.1093/nar/gku178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM, Gabdank I, Hilton JA, Jain K, Baymuradov UK, Narayanan AK, Onate KC, Graham K, Miyasato SR, Dreszer TR, Strattan JS, Jolanki O, Tanaka FY, Cherry JM (2018) The encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids Res 46(D1):D794–D801. https://doi.org/10.1093/nar/gkx1081

    Article  CAS  PubMed  Google Scholar 

  10. Bailey T, Krajewski P, Ladunga I, Lefebvre C, Li Q, Liu T, Madrigal P, Taslim C, Zhang J (2013) Practical guidelines for the comprehensive analysis of ChIP-seq data. PLoS Comput Biol 9(11):e1003326. https://doi.org/10.1371/journal.pcbi.1003326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S, Bernstein BE, Bickel P, Brown JB, Cayting P, Chen Y, DeSalvo G, Epstein C, Fisher-Aylor KI, Euskirchen G, Gerstein M, Gertz J, Hartemink AJ, Hoffman MM, Iyer VR, Jung YL, Karmakar S, Kellis M, Kharchenko PV, Li Q, Liu T, Liu XS, Ma L, Milosavljevic A, Myers RM, Park PJ, Pazin MJ, Perry MD, Raha D, Reddy TE, Rozowsky J, Shoresh N, Sidow A, Slattery M, Stamatoyannopoulos JA, Tolstorukov MY, White KP, Xi S, Farnham PJ, Lieb JD, Wold BJ, Snyder M (2012) ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 22(9):1813–1831. https://doi.org/10.1101/gr.136184.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shin H, Liu T, Duan X, Zhang Y, Liu XS (2013) Computational methodology for ChIP-seq analysis. Quant Biol 1(1):54–70. https://doi.org/10.1007/s40484-013-0006-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakato R, Shirahige K (2017) Recent advances in ChIP-seq analysis: from quality management to whole-genome annotation. Brief Bioinform 18(2):279–290. https://doi.org/10.1093/bib/bbw023

    Article  CAS  PubMed  Google Scholar 

  14. Nakato R, Sakata T (2021) Methods for ChIP-seq analysis: a practical workflow and advanced applications. Methods 187:44–53. https://doi.org/10.1016/j.ymeth.2020.03.005

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9(9):R137. https://doi.org/10.1186/gb-2008-9-9-r137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zang C, Schones DE, Zeng C, Cui K, Zhao K, Peng W (2009) A clustering approach for identification of enriched domains from histone modification ChIP-seq data. Bioinformatics 25(15):1952–1958. https://doi.org/10.1093/bioinformatics/btp340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc

  18. Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884–i890. https://doi.org/10.1093/bioinformatics/bty560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Diaz A, Nellore A, Song JS (2012) Chance: comprehensive software for quality control and validation of ChIP-seq data. Genome Biol 13(10):R98. https://doi.org/10.1186/gb-2012-13-10-r98

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schmidt D, Schwalie PC, Wilson MD, Ballester B, Goncalves A, Kutter C, Brown GD, Marshall A, Flicek P, Odom DT (2012) Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148(1–2):335–348. https://doi.org/10.1016/j.cell.2011.11.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Flensburg C, Kinkel SA, Keniry A, Blewitt ME, Oshlack A (2014) A comparison of control samples for ChIP-seq of histone modifications. Front Genet 5:329. https://doi.org/10.3389/fgene.2014.00329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10(10):669–680. https://doi.org/10.1038/nrg2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ji H, Jiang H, Ma W, Johnson DS, Myers RM, Wong WH (2008) An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nat Biotechnol 26(11):1293–1300. https://doi.org/10.1038/nbt.1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rozowsky J, Euskirchen G, Auerbach RK, Zhang ZD, Gibson T, Bjornson R, Carriero N, Snyder M, Gerstein MB (2009) PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat Biotechnol 27(1):66–75. https://doi.org/10.1038/nbt.1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kharchenko PV, Tolstorukov MY, Park PJ (2008) Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat Biotechnol 26(12):1351–1359. https://doi.org/10.1038/nbt.1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liang K, Keles S (2012) Normalization of ChIP-seq data with control. BMC Bioinform 13:199. https://doi.org/10.1186/1471-2105-13-199

    Article  Google Scholar 

  27. Wilbanks EG, Facciotti MT (2010) Evaluation of algorithm performance in ChIP-seq peak detection. PLoS One 5(7):e11471. https://doi.org/10.1371/journal.pone.0011471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li Q, Brown JB, Huang H, Bickel PJ (2011) Measuring reproducibility of high-throughput experiments. Ann Appl Stat 5(3):1752–1779. https://doi.org/10.1214/11-AOAS466

    Article  Google Scholar 

  29. Irizarry RA, Warren D, Spencer F, Kim IF, Biswal S, Frank BC, Gabrielson E, Garcia JG, Geoghegan J, Germino G, Griffin C, Hilmer SC, Hoffman E, Jedlicka AE, Kawasaki E, Martinez-Murillo F, Morsberger L, Lee H, Petersen D, Quackenbush J, Scott A, Wilson M, Yang Y, Ye SQ, Yu W (2005) Multiple-laboratory comparison of microarray platforms. Nat Methods 2(5):345–350. https://doi.org/10.1038/nmeth756

    Article  CAS  PubMed  Google Scholar 

  30. Diaz A, Park K, Lim DA, Song JS (2012) Normalization, bias correction, and peak calling for ChIP-seq. Stat Appl Genet Mol Biol 11(3):Article 9. https://doi.org/10.1515/1544-6115.1750

    Article  CAS  PubMed  Google Scholar 

  31. Jin H, Kasper LH, Larson JD, Wu G, Baker SJ, Zhang J, Fan Y (2020) ChIPseqSpikeInFree: a ChIP-seq normalization approach to reveal global changes in histone modifications without spike-in. Bioinformatics 36(4):1270–1272. https://doi.org/10.1093/bioinformatics/btz720

    Article  CAS  PubMed  Google Scholar 

  32. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  33. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shao Z, Zhang Y, Yuan GC, Orkin SH, Waxman DJ (2012) MAnorm: a robust model for quantitative comparison of ChIP-seq data sets. Genome Biol 13(3):R16. https://doi.org/10.1186/gb-2012-13-3-r16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tu S, Li M, Chen H, Tan F, Xu J, Waxman DJ, Zhang Y, Shao Z (2021) MAnorm2 for quantitatively comparing groups of ChIP-seq samples. Genome Res 31(1):131–145. https://doi.org/10.1101/gr.262675.120

    Article  PubMed  PubMed Central  Google Scholar 

  36. Teng M, Du D, Chen D, Irizarry RA (2021) Characterizing batch effects and binding site-specific variability in ChIP-seq data. NAR Genom Bioinform 3(4):lqab098. https://doi.org/10.1093/nargab/lqab098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Teng M, Irizarry RA (2017) Accounting for GC-content bias reduces systematic errors and batch effects in ChIP-seq data. Genome Res 27(11):1930–1938. https://doi.org/10.1101/gr.220673.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Leek JT (2014) Svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res 42(21). https://doi.org/10.1093/nar/gku864

  39. Risso D, Ngai J, Speed TP, Dudoit S (2014) Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol 32(9):896–902. https://doi.org/10.1038/nbt.2931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu DY, Bittencourt D, Stallcup MR, Siegmund KD (2015) Identifying differential transcription factor binding in ChIP-seq. Front Genet 6:169. https://doi.org/10.3389/fgene.2015.00169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ, Brown GD, Gojis O, Ellis IO, Green AR, Ali S, Chin SF, Palmieri C, Caldas C, Carroll JS (2012) Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481(7381):389–393. https://doi.org/10.1038/nature10730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47. https://doi.org/10.1093/nar/gkv007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lun AT, Smyth GK (2016) Csaw: a Bioconductor package for differential binding analysis of ChIP-seq data using sliding windows. Nucleic Acids Res 44(5):e45. https://doi.org/10.1093/nar/gkv1191

    Article  CAS  PubMed  Google Scholar 

  44. Gates LA, Foulds CE, O’Malley BW (2017) Histone marks in the ‘Driver’s seat’: functional roles in steering the transcription cycle. Trends Biochem Sci 42(12):977–989. https://doi.org/10.1016/j.tibs.2017.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Machanick P, Bailey TL (2011) MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics 27(12):1696–1697. https://doi.org/10.1093/bioinformatics/btr189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hariprakash JM, Ferrari F (2019) Computational biology solutions to identify enhancers-target gene pairs. Comput Struct Biotechnol J 17:821–831. https://doi.org/10.1016/j.csbj.2019.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ramirez F, Dundar F, Diehl S, Gruning BA, Manke T (2014) deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res 42(Web Server issue):W187–W191. https://doi.org/10.1093/nar/gku365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12(6):996–1006. https://doi.org/10.1101/gr.229102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29(1):24–26. https://doi.org/10.1038/nbt.1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang C, Zhang L, Ke L, Ding W, Jiang S, Li D, Narita Y, Hou I, Liang J, Li S, Xiao H, Gottwein E, Kaye KM, Teng M, Zhao B (2020) Primary effusion lymphoma enhancer connectome links super-enhancers to dependency factors. Nat Commun 11(1):6318. https://doi.org/10.1038/s41467-020-20136-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kasowski M, Grubert F, Heffelfinger C, Hariharan M, Asabere A, Waszak SM, Habegger L, Rozowsky J, Shi M, Urban AE, Hong MY, Karczewski KJ, Huber W, Weissman SM, Gerstein MB, Korbel JO, Snyder M (2010) Variation in transcription factor binding among humans. Science 328(5975):232–235. https://doi.org/10.1126/science.1183621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shen R, Mo Q, Schultz N, Seshan VE, Olshen AB, Huse J, Ladanyi M, Sander C (2012) Integrative subtype discovery in glioblastoma using iCluster. PLoS One 7(4):e35236. https://doi.org/10.1371/journal.pone.0035236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mumbach MR, Rubin AJ, Flynn RA, Dai C, Khavari PA, Greenleaf WJ, Chang HY (2016) HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat Methods 13(11):919–922. https://doi.org/10.1038/nmeth.3999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxiang Teng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Teng, M. (2023). Statistical Analysis in ChIP-seq-Related Applications. In: Fridley, B., Wang, X. (eds) Statistical Genomics. Methods in Molecular Biology, vol 2629. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2986-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2986-4_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2985-7

  • Online ISBN: 978-1-0716-2986-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics