Skip to main content

In Vitro Generation of Murine Dendritic Cells from Hoxb8-Immortalized Hematopoietic Progenitors

  • Protocol
  • First Online:
Dendritic Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2618))

Abstract

Mouse dendritic cells (DCs) are routinely generated based on cells isolated form the bone marrow (BM) and cultured in the presence of growth factors that support DC development, such as FMS-like tyrosine kinase 3 ligand (FLT3L) and granulocyte-macrophage colony-stimulating factor (GM-CSF) (Guo et al., J Immunol Methods 432:24–29, 2016). In response to these growth factors, DC progenitors expand and differentiate, while other cell types die during the in vitro culture period, ultimately leading to relatively homogenous DC populations. An alternative method, which is discussed in detail in this chapter, relies on conditional immortalization of progenitor cells with DC potential in vitro using an estrogen-regulated form of Hoxb8 (ERHBD-Hoxb8). Such progenitors are established by retroviral transduction of largely unseparated BM cells with a retroviral vector expressing ERHBD-Hoxb8. Treatment of ERHBD-Hoxb8-expressing progenitors with estrogen results in Hoxb8 activation, which blocks cell differentiation and allows for expansion of homogenous progenitor cell populations in the presence of FLT3L. These cells, referred to as Hoxb8-FL cells, retain lineage potential for lymphocyte and myeloid lineages, including the DC lineage. Upon removal of estrogen (inactivation of Hoxb8), Hoxb8-FL cells differentiate into highly homogenous DC populations in the presence of GM-CSF or FLT3L akin to their endogenous counterparts. Given their unlimited proliferative capacity and amenability for genetic manipulation, for example, by CRISPR/Cas9, these cells provide a large number of options to investigate DC biology. Here, I am describing the method to establish Hoxb8-FL cells from mouse BM, as well as procedures for DC generation and gene deletion using lentivirally delivered CRISPR/Cas9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang GG, Calvo KR, Pasillas MP, Sykes DB, Hacker H, Kamps MP (2006) Quantitative production of macrophages or neutrophils ex vivo using conditional Hoxb8. Nat Methods 3(4):287–293. https://doi.org/10.1038/nmeth865

    Article  CAS  PubMed  Google Scholar 

  2. Tora L, Mullick A, Metzger D, Ponglikitmongkol M, Park I, Chambon P (1989) The cloned human oestrogen receptor contains a mutation which alters its hormone binding properties. EMBO J 8(7):1981–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Redecke V, Wu R, Zhou J, Finkelstein D, Chaturvedi V, High AA, Hacker H (2013) Hematopoietic progenitor cell lines with myeloid and lymphoid potential. Nat Methods 10(8):795–803. https://doi.org/10.1038/nmeth.2510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guo X, Zhou Y, Wu T, Zhu X, Lai W, Wu L (2016) Generation of mouse and human dendritic cells in vitro. J Immunol Methods 432:24–29. https://doi.org/10.1016/j.jim.2016.02.011

    Article  CAS  PubMed  Google Scholar 

  5. Anderson DA 3rd, Dutertre CA, Ginhoux F, Murphy KM (2021) Genetic models of human and mouse dendritic cell development and function. Nat Rev Immunol 21(2):101–115. https://doi.org/10.1038/s41577-020-00413-x

    Article  CAS  PubMed  Google Scholar 

  6. Bunin A, Sisirak V, Ghosh HS, Grajkowska LT, Hou ZE, Miron M, Yang C, Ceribelli M, Uetani N, Chaperot L, Plumas J, Hendriks W, Tremblay ML, Hacker H, Staudt LM, Green PH, Bhagat G, Reizis B (2015) Protein tyrosine phosphatase PTPRS is an inhibitory receptor on human and murine plasmacytoid dendritic cells. Immunity 43(2):277–288. https://doi.org/10.1016/j.immuni.2015.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Grajkowska LT, Ceribelli M, Lau CM, Warren ME, Tiniakou I, Nakandakari Higa S, Bunin A, Haecker H, Mirny LA, Staudt LM, Reizis B (2017) Isoform-specific expression and feedback regulation of E protein TCF4 control dendritic cell lineage specification. Immunity 46(1):65–77. https://doi.org/10.1016/j.immuni.2016.11.006

    Article  CAS  PubMed  Google Scholar 

  8. Leithner A, Renkawitz J, De Vries I, Hauschild R, Hacker H, Sixt M (2018) Fast and efficient genetic engineering of hematopoietic precursor cells for the study of dendritic cell migration. Eur J Immunol 48(6):1074–1077. https://doi.org/10.1002/eji.201747358

    Article  CAS  PubMed  Google Scholar 

  9. Kopf A, Renkawitz J, Hauschild R, Girkontaite I, Tedford K, Merrin J, Thorn-Seshold O, Trauner D, Hacker H, Fischer KD, Kiermaier E, Sixt M (2020) Microtubules control cellular shape and coherence in amoeboid migrating cells. J Cell Biol 219(6):1–41. https://doi.org/10.1083/jcb.201907154

    Article  CAS  Google Scholar 

  10. Sanjana NE, Shalem O, Zhang F (2014) Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11(8):783–784. https://doi.org/10.1038/nmeth.3047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, Graham DB, Jhunjhunwala S, Heidenreich M, Xavier RJ, Langer R, Anderson DG, Hacohen N, Regev A, Feng G, Sharp PA, Zhang F (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159(2):440–455. https://doi.org/10.1016/j.cell.2014.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The CD18-sgRNA vector was generously provided by M. Sixt. This work was supported by NIH grant R01 AI145877 to H.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Häcker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Häcker, H. (2023). In Vitro Generation of Murine Dendritic Cells from Hoxb8-Immortalized Hematopoietic Progenitors. In: Sisirak, V. (eds) Dendritic Cells. Methods in Molecular Biology, vol 2618. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2938-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2938-3_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2937-6

  • Online ISBN: 978-1-0716-2938-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics