Skip to main content

Sialyltransferase Activity Assay for Ganglioside GM3 Synthase

  • Protocol
  • First Online:
Glycolipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2613))

Abstract

GM3 synthase (GM3S) is a sialyltransferase that transfers sialic acid from CMP-sialic acid to lactosylceramide. This reaction results in formation of ganglioside GM3 and is essential for biosynthesis of its downstream derivatives, which include a- and b-series gangliosides. Here, we describe a method for GM3S enzymatic assay using fluorescence-labeled alkyl lactoside as acceptor substrate, followed by HPLC for separation of enzymatic product. The method allows quantitative assay of GM3S sialyltransferase activity in cultured cells and mouse brain tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Inokuchi J, Inamori K, Kabayama K, Nagafuku M, Uemura S, Go S, Suzuki A, Ohno I, Kanoh H, Shishido F (2018) Biology of GM3 ganglioside. Prog Mol Biol Transl Sci 156:151–195. https://doi.org/10.1016/bs.pmbts.2017.10.004

    Article  Google Scholar 

  2. Schnaar RL (2019) The biology of gangliosides. Adv Carbohydr Chem Biochem 76:113–148. https://doi.org/10.1016/bs.accb.2018.09.002

    Article  Google Scholar 

  3. Groux-Degroote S, Rodriguez-Walker M, Dewald JH, Daniotti JL, Delannoy P (2018) Gangliosides in cancer cell signaling. Prog Mol Biol Transl Sci 156:197–227. https://doi.org/10.1016/bs.pmbts.2017.10.003

    Article  Google Scholar 

  4. Nordstrom V, Willershauser M, Herzer S, Rozman J, von Bohlen Und Halbach O, Meldner S, Rothermel U, Kaden S, Roth FC, Waldeck C, Gretz N, de Angelis MH, Draguhn A, Klingenspor M, Grone HJ, Jennemann R (2013) Neuronal expression of glucosylceramide synthase in central nervous system regulates body weight and energy homeostasis. PLoS Biol 11(3):e1001506. https://doi.org/10.1371/journal.pbio.1001506

    Article  Google Scholar 

  5. Ji S, Tokizane K, Ohkawa Y, Ohmi Y, Banno R, Okajima T, Kiyama H, Furukawa K, Furukawa K (2016) Increased a-series gangliosides positively regulate leptin/Ob receptor-mediated signals in hypothalamus of GD3 synthase-deficient mice. Biochem Biophys Res Commun 479(3):453–460. https://doi.org/10.1016/j.bbrc.2016.09.077

    Article  Google Scholar 

  6. Inamori K, Ito H, Tamura Y, Nitta T, Yang X, Nihei W, Shishido F, Imazu S, Tsukita S, Yamada T, Katagiri H, Inokuchi J (2018) Deficient ganglioside synthesis restores responsiveness to leptin and melanocortin signaling in obese KKAy mice. J Lipid Res 59(8):1472–1481. https://doi.org/10.1194/jlr.M085753

    Article  Google Scholar 

  7. Yoon SJ, Nakayama K, Hikita T, Handa K, Hakomori S (2006) Epidermal growth factor receptor tyrosine kinase is modulated by GM3 interaction with N-linked GlcNAc termini of the receptor. Proc Natl Acad Sci U S A 103(50):18987–18991. https://doi.org/10.1073/pnas.0609281103

    Article  Google Scholar 

  8. Kabayama K, Sato T, Saito K, Loberto N, Prinetti A, Sonnino S, Kinjo M, Igarashi Y, Inokuchi J (2007) Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc Natl Acad Sci U S A 104(34):13678–13683. https://doi.org/10.1073/pnas.0703650104

    Article  Google Scholar 

  9. Coskun U, Grzybek M, Drechsel D, Simons K (2011) Regulation of human EGF receptor by lipids. Proc Natl Acad Sci U S A 108(22):9044–9048. https://doi.org/10.1073/pnas.1105666108

    Article  Google Scholar 

  10. Nagafuku M, Sato T, Sato S, Shimizu K, Taira T, Inokuchi J (2015) Control of homeostatic and pathogenic balance in adipose tissue by ganglioside GM3. Glycobiology 25(3):303–318. https://doi.org/10.1093/glycob/cwu112

    Article  Google Scholar 

  11. Kanoh H, Nitta T, Go S, Inamori K, Veillon L, Nihei W, Fujii M, Kabayama K, Shimoyama A, Fukase K, Ohto U, Shimizu T, Watanabe T, Shindo H, Aoki S, Sato K, Nagasaki M, Yatomi Y, Komura N, Ando H, Ishida H, Kiso M, Natori Y, Yoshimura Y, Zonca A, Cattaneo A, Letizia M, Ciampa M, Mauri L, Prinetti A, Sonnino S, Suzuki A, Inokuchi J (2020) Homeostatic and pathogenic roles of GM3 ganglioside molecular species in TLR4 signaling in obesity. EMBO J 39(12):e101732. https://doi.org/10.15252/embj.2019101732

    Article  Google Scholar 

  12. Simpson MA, Cross H, Proukakis C, Priestman DA, Neville DC, Reinkensmeier G, Wang H, Wiznitzer M, Gurtz K, Verganelaki A, Pryde A, Patton MA, Dwek RA, Butters TD, Platt FM, Crosby AH (2004) Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nat Genet 36(11):1225–1229. https://doi.org/10.1038/ng1460

    Article  Google Scholar 

  13. Trinchera M, Parini R, Indellicato R, Domenighini R, dall’Olio F (2018) Diseases of ganglioside biosynthesis: an expanding group of congenital disorders of glycosylation. Mol Genet Metab 124(4):230–237. https://doi.org/10.1016/j.ymgme.2018.06.014

    Article  Google Scholar 

  14. Yamashita T, Hashiramoto A, Haluzik M, Mizukami H, Beck S, Norton A, Kono M, Tsuji S, Daniotti JL, Werth N, Sandhoff R, Sandhoff K, Proia RL (2003) Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc Natl Acad Sci U S A 100(6):3445–3449. https://doi.org/10.1073/pnas.0635898100

    Article  Google Scholar 

  15. Yoshikawa M, Go S, Takasaki K, Kakazu Y, Ohashi M, Nagafuku M, Kabayama K, Sekimoto J, Suzuki S, Takaiwa K, Kimitsuki T, Matsumoto N, Komune S, Kamei D, Saito M, Fujiwara M, Iwasaki K, Inokuchi J (2009) Mice lacking ganglioside GM3 synthase exhibit complete hearing loss due to selective degeneration of the organ of Corti. Proc Natl Acad Sci U S A 106(23):9483–9488. https://doi.org/10.1073/pnas.0903279106

    Article  Google Scholar 

  16. Yang LJ, Zeller CB, Shaper NL, Kiso M, Hasegawa A, Shapiro RE, Schnaar RL (1996) Gangliosides are neuronal ligands for myelin-associated glycoprotein. Proc Natl Acad Sci U S A 93(2):814–818. https://doi.org/10.1073/pnas.93.2.814

    Article  Google Scholar 

  17. Pan B, Fromholt SE, Hess EJ, Crawford TO, Griffin JW, Sheikh KA, Schnaar RL (2005) Myelin-associated glycoprotein and complementary axonal ligands, gangliosides, mediate axon stability in the CNS and PNS: neuropathology and behavioral deficits in single- and double-null mice. Exp Neurol 195(1):208–217. https://doi.org/10.1016/j.expneurol.2005.04.017

    Article  Google Scholar 

  18. Collins BE, Yang LJ, Mukhopadhyay G, Filbin MT, Kiso M, Hasegawa A, Schnaar RL (1997) Sialic acid specificity of myelin-associated glycoprotein binding. J Biol Chem 272(2):1248–1255. https://doi.org/10.1074/jbc.272.2.1248

    Article  Google Scholar 

  19. Paulson JC, Rademacher C (2009) Glycan terminator. Nat Struct Mol Biol 16(11):1121–1122. https://doi.org/10.1038/nsmb1109-1121

    Article  Google Scholar 

  20. Bowser LE, Young M, Wenger OK, Ammous Z, Brigatti KW, Carson VJ, Moser T, Deline J, Aoki K, Morlet T, Scott EM, Puffenberger EG, Robinson DL, Hendrickson C, Salvin J, Gottlieb S, Heaps AD, Tiemeyer M, Strauss KA (2019) Recessive GM3 synthase deficiency: natural history, biochemistry, and therapeutic frontier. Mol Genet Metab 126(4):475–488. https://doi.org/10.1016/j.ymgme.2019.01.013

    Article  Google Scholar 

  21. Boccuto L, Aoki K, Flanagan-Steet H, Chen CF, Fan X, Bartel F, Petukh M, Pittman A, Saul R, Chaubey A, Alexov E, Tiemeyer M, Steet R, Schwartz CE (2014) A mutation in a ganglioside biosynthetic enzyme, ST3GAL5, results in salt & pepper syndrome, a neurocutaneous disorder with altered glycolipid and glycoprotein glycosylation. Hum Mol Genet 23(2):418–433. https://doi.org/10.1093/hmg/ddt434

    Article  Google Scholar 

  22. Lee JS, Yoo Y, Lim BC, Kim KJ, Song J, Choi M, Chae JH (2016) GM3 synthase deficiency due to ST3GAL5 variants in two Korean female siblings: masquerading as Rett syndrome-like phenotype. Am J Med Genet A 170(8):2200–2205. https://doi.org/10.1002/ajmg.a.37773

    Article  Google Scholar 

  23. Indellicato R, Parini R, Domenighini R, Malagolini N, Iascone M, Gasperini S, Masera N, dall’Olio F, Trinchera M (2019) Total loss of GM3 synthase activity by a normally processed enzyme in a novel variant and in all ST3GAL5 variants reported to cause a distinct congenital disorder of glycosylation. Glycobiology 29(3):229–241. https://doi.org/10.1093/glycob/cwy112

    Article  Google Scholar 

  24. Heide S, Jacquemont ML, Cheillan D, Renouil M, Tallot M, Schwartz CE, Miquel J, Bintner M, Rodriguez D, Darcel F, Buratti J, Haye D, Passemard S, Gras D, Perrin L, Capri Y, Gerard B, Piton A, Keren B, Thauvin-Robinet C, Duffourd Y, Faivre L, Poe C, Perville A, Heron D, Thevenon J, Arnaud L, LeGuern E, La Selva L, Vetro A, Guerrini R, Nava C, Mignot C (2022) GM3 synthase deficiency in non-Amish patients. Genet Med 24(2):492–498. https://doi.org/10.1016/j.gim.2021.10.007

    Article  Google Scholar 

  25. Miura Y, Yamagata T (1997) Glycosylation of lactosylceramide analogs in animal cells: amphipathic disaccharide primers for glycosphingolipid synthesis. Biochem Biophys Res Commun 241(3):698–703. https://doi.org/10.1006/bbrc.1997.7876

    Article  Google Scholar 

  26. Watanabe S (2008) Synthesis of fluorescent alkyl lactoside derivatives. Carbohydr Res 343(13):2325–2328. https://doi.org/10.1016/j.carres.2008.05.008

    Article  Google Scholar 

  27. Nihei W, Nagafuku M, Hayamizu H, Odagiri Y, Tamura Y, Kikuchi Y, Veillon L, Kanoh H, Inamori KI, Arai K, Kabayama K, Fukase K, Inokuchi J (2018) NPC1L1-dependent intestinal cholesterol absorption requires ganglioside GM3 in membrane microdomains. J Lipid Res 59(11):2181–2187. https://doi.org/10.1194/jlr.M089201

    Article  Google Scholar 

  28. Uemura S, Yoshida S, Shishido F, Inokuchi J (2009) The cytoplasmic tail of GM3 synthase defines its subcellular localization, stability, and in vivo activity. Mol Biol Cell 20(13):3088–3100. https://doi.org/10.1091/mbc.E08-12-1219

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by JSPS KAKENHI, grant numbers JP21K06531 (K.-i.I.) and Grant-in-Aid for Scientific Research (B) from MEXT (20H03452), Takeda Foundation, and MEXT-Supported Program for the Strategic Research Foundation at Private Universities (S1201031) (J.-i.I.). The authors are grateful to Dr. S. Anderson for English editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kei-ichiro Inamori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Inamori, Ki., Nitta, T., Shishido, F., Watanabe, S., Ohno, I., Inokuchi, Ji. (2023). Sialyltransferase Activity Assay for Ganglioside GM3 Synthase. In: Kabayama, K., Inokuchi, Ji. (eds) Glycolipids. Methods in Molecular Biology, vol 2613. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2910-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2910-9_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2909-3

  • Online ISBN: 978-1-0716-2910-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics