Skip to main content

A Computational Tool for Analysis of Mass Spectrometry Data of Ubiquitin-Enriched Samples

  • Protocol
  • First Online:
The Ubiquitin Code

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2602))

  • 858 Accesses

Abstract

Mass spectrometry data on ubiquitin and ubiquitin-like modifiers are becoming increasingly more accessible, and the coverage progressively deepen as methodologies mature. This type of mass spectrometry data is linked to specific data analysis pipelines for ubiquitin. This chapter describes a computational tool to facilitate analysis of mass spectrometry data obtained on ubiquitin-enriched samples. For example, the analysis of ubiquitin branch site statistics and functional enrichment analysis against ubiquitin proteasome system protein sets are completed with a few functional calls. We foresee that the proposed computational methodology can aid in proximity drug design by, for example, elucidating the expression of E3 ligases and other factors related to the ubiquitin proteasome system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matthiesen R, Azevedo L, Amorim A et al (2011) Discussion on common data analysis strategies used in MS-based proteomics. Proteomics 11(4):604–619. https://doi.org/10.1002/pmic.201000404

    Article  CAS  PubMed  Google Scholar 

  2. Schjoldager KT, Narimatsu Y, Joshi HJ et al (2020) Global view of human protein glycosylation pathways and functions. Nat Rev Mol Cell Biol 21(12):729–749. https://doi.org/10.1038/s41580-020-00294-x

    Article  CAS  PubMed  Google Scholar 

  3. Swatek KN, Komander D (2016) Ubiquitin modifications. Cell Res 26(4):399–422. https://doi.org/10.1038/cr.2016.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bedford L, Lowe J, Dick LR et al (2011) Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov 10(1):29–46. https://doi.org/10.1038/nrd3321

    Article  CAS  PubMed  Google Scholar 

  5. Quinet G, Xolalpa W, Reyes-Garau D et al (2022) Constitutive activation of p62/Sequestosome-1-mediated Proteaphagy regulates proteolysis and impairs cell death in Bortezomib-resistant mantle cell lymphoma. Cancers 14(4):doi:10.3390/cancers14040923

    Article  Google Scholar 

  6. Mata-Cantero L, Azkargorta M, Aillet F et al (2016) New insights into host-parasite ubiquitin proteome dynamics in P. falciparum infected red blood cells using a TUBEs-MS approach. J Proteome 139:45–59. https://doi.org/10.1016/j.jprot.2016.03.004

    Article  CAS  Google Scholar 

  7. Lopitz-Otsoa F, Rodriguez-Suarez E, Aillet F et al (2012) Integrative analysis of the ubiquitin proteome isolated using tandem ubiquitin binding entities (TUBEs). J Proteome 75(10):2998–3014. https://doi.org/10.1016/j.jprot.2011.12.001

    Article  CAS  Google Scholar 

  8. Hjerpe R, Aillet F, Lopitz-Otsoa F et al (2009) Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. EMBO Rep 10(11):1250–1258. https://doi.org/10.1038/embor.2009.192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Akimov V, Barrio-Hernandez I, Hansen SVF et al (2018) UbiSite approach for comprehensive mapping of lysine and N-terminal ubiquitination sites. Nat Struct Mol Biol 25(7):631–640. https://doi.org/10.1038/s41594-018-0084-y

    Article  CAS  PubMed  Google Scholar 

  10. Lee KA, Hammerle LP, Andrews PS et al (2011) Ubiquitin ligase substrate identification through quantitative proteomics at both the protein and peptide levels. J Biol Chem 286(48):41530–41538. https://doi.org/10.1074/jbc.M111.248856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pirone L, Xolalpa W, Sigurethsson JO et al (2017) A comprehensive platform for the analysis of ubiquitin-like protein modifications using in vivo biotinylation. Sci Rep 7:40756. https://doi.org/10.1038/srep40756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Trulsson F, Akimov V, Robu M et al (2022) Deubiquitinating enzymes and the proteasome regulate preferential sets of ubiquitin substrates. Nat Commun 13(1):2736. https://doi.org/10.1038/s41467-022-30376-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11(12):2301–2319. https://doi.org/10.1038/nprot.2016.136

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

R.M. is supported by Fundação para a Ciência e a Tecnologia (CEEC position, 2019–2025 investigator). This article is a result of the projects (iNOVA4Health—UIDB/04462/2020), supported by Lisboa Portugal Regional Operational Programme (Lisboa, 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). This work is also funded by FEDER funds through the COMPETE 2020 Programme and National Funds through FCT—Portuguese Foundation for Science and Technology under the projects number PTDC/BTM-TEC/30087/2017 and PTDC/BTM-TEC/30088/2017. This publication is based upon work from COST Action, CA20113 “PROTEOCURE” supported by COST (European Cooperation in Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rune Matthiesen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Matthiesen, R., Rodriguez, M.S., Carvalho, A.S. (2023). A Computational Tool for Analysis of Mass Spectrometry Data of Ubiquitin-Enriched Samples. In: Rodriguez, M.S., Barrio, R. (eds) The Ubiquitin Code. Methods in Molecular Biology, vol 2602. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2859-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2859-1_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2858-4

  • Online ISBN: 978-1-0716-2859-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics