Skip to main content

Single Molecule Imaging of DNA–Protein Interactions Using DNA Curtains

  • Protocol
  • First Online:
DNA-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2599))

Abstract

Direct observation of enzymes that work to promote nucleic acid metabolism is a powerful approach to understanding their biochemical and biological properties. Over several years, fluorescent optical microscopy has developed as a powerful tool for watching biological pathways as they occur in real time. Here we describe DNA curtains as an optical microscopy tool that combines engineering, biochemistry, and single molecule imaging to make direct observations of enzymes as they work on DNA in real time. We will provide a detailed methodology of this approach including information about the setup of a basic TIRF microscope, assembly of flow chambers for imaging, and the protocol for making DNA curtains. Our goal is to help the reader better understand the technical approaches to DNA curtains and to better understand the biochemical and biological applications of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kong M, Cutts EE, Pan D, Beuron F, Kaliyappan T, Xue C, Morris EP, Musacchio A, Vannini A, Greene EC (2020) Human condensin I and II drive extensive ATP-dependent compaction of nucleosome-bound DNA. Mol Cell 79(1):99–114.e119. https://doi.org/10.1016/j.molcel.2020.04.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Terakawa T, Bisht S, Eeftens JM, Dekker C, Haering CH, Greene EC (2017) The condensin complex is a mechanochemical motor that translocates along DNA. Science 358(6363):672–676. https://doi.org/10.1126/science.aan6516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kim Y, Shi Z, Zhang H, Finkelstein IJ, Yu H (2019) Human cohesin compacts DNA by loop extrusion. Science 366(6471):1345–1349. https://doi.org/10.1126/science.aaz4475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Qi Z, Redding S, Lee JY, Gibb B, Kwon Y, Niu H, Gaines WA, Sung P, Greene EC (2015) DNA sequence alignment by microhomology sampling during homologous recombination. Cell 160(5):856–869. https://doi.org/10.1016/j.cell.2015.01.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kaniecki K, De Tullio L, Gibb B, Kwon Y, Sung P, Greene EC (2017) Dissociation of Rad51 presynaptic complexes and heteroduplex DNA joints by tandem assemblies of Srs2. Cell Rep 21(11):3166–3177. https://doi.org/10.1016/j.celrep.2017.11.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Soniat MM, Myler LR, Kuo HC, Paull TT, Finkelstein IJ (2019) RPA phosphorylation inhibits DNA resection. Mol Cell 75(1):145–153.e145. https://doi.org/10.1016/j.molcel.2019.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Redding S, Sternberg SH, Marshall M, Gibb B, Bhat P, Guegler CK, Wiedenheft B, Doudna JA, Greene EC (2015) Surveillance and processing of foreign DNA by the Escherichia coli CRISPR-Cas system. Cell 163(4):854–865. https://doi.org/10.1016/j.cell.2015.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dillard KE, Brown MW, Johnson NV, Xiao Y, Dolan A, Hernandez E, Dahlhauser SD, Kim Y, Myler LR, Anslyn EV, Ke A, Finkelstein IJ (2018) Assembly and translocation of a CRISPR-Cas primed acquisition complex. Cell 175(4):934–946.e915. https://doi.org/10.1016/j.cell.2018.09.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Larson AG, Elnatan D, Keenen MM, Trnka MJ, Johnston JB, Burlingame AL, Agard DA, Redding S, Narlikar GJ (2017) Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547(7662):236–240. https://doi.org/10.1038/nature22822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Duzdevich D, Warner MD, Ticau S, Ivica NA, Bell SP, Greene EC (2015) The dynamics of eukaryotic replication initiation: origin specificity, licensing, and firing at the single-molecule level. Mol Cell 58(3):483–494. https://doi.org/10.1016/j.molcel.2015.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gorman J, Wang F, Redding S, Plys AJ, Fazio T, Wind S, Alani EE, Greene EC (2012) Single-molecule imaging reveals target-search mechanisms during DNA mismatch repair. Proc Natl Acad Sci U S A 109(45):E3074–E3083. https://doi.org/10.1073/pnas.1211364109

    Article  PubMed  PubMed Central  Google Scholar 

  12. Crickard JB, Xue C, Wang W, Kwon Y, Sung P, Greene EC (2019) The RecQ helicase Sgs1 drives ATP-dependent disruption of Rad51 filaments. Nucleic Acids Res 47(9):4694–4706. https://doi.org/10.1093/nar/gkz186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Axelrod D (1989) Chapter 9 Total internal reflection fluorescence microscopy. In: Taylor DL, Wang Y-L (eds) Methods in cell biology, vol 30. Academic Press, pp 245–270. https://doi.org/10.1016/S0091-679X(08)60982-6

    Chapter  Google Scholar 

  14. Soniat MM, Myler LR, Schaub JM, Kim Y, Gallardo IF, Finkelstein IJ (2017) Next-generation DNA curtains for single-molecule studies of homologous recombination. Methods Enzymol 592:259–281. https://doi.org/10.1016/bs.mie.2017.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fazio TA, Visnapuu M, Greene EC, Wind SJ (2009) Fabrication of nanoscale "curtain rods" for DNA curtains using nanoimprint lithography. J Vac Sci Technol A 27(6):3095–3098. https://doi.org/10.1116/1.3259951

    Article  CAS  PubMed  Google Scholar 

  16. Gallardo IF, Pasupathy P, Brown M, Manhart CM, Neikirk DP, Alani E, Finkelstein IJ (2015) High-throughput universal DNA curtain arrays for single-molecule fluorescence imaging. Langmuir 31(37):10310–10317. https://doi.org/10.1021/acs.langmuir.5b02416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Greene EC, Wind S, Fazio T, Gorman J, Visnapuu ML (2010) DNA curtains for high-throughput single-molecule optical imaging. Methods Enzymol 472:293–315. https://doi.org/10.1016/s0076-6879(10)72006-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tutkus M, Rakickas T, Kopu̅stas A, Ivanovaitė ŠN, Venckus O, Navikas V, Zaremba M, Manakova E, Valiokas RN (2019) Fixed DNA molecule arrays for high-throughput single DNA–protein interaction studies. Langmuir 35(17):5921–5930. https://doi.org/10.1021/acs.langmuir.8b03424

    Article  CAS  PubMed  Google Scholar 

  19. Crickard JB, Kwon Y, Sung P, Greene EC (2020) Rad54 and Rdh54 occupy spatially and functionally distinct sites within the Rad51-ssDNA presynaptic complex. Embo J 39(20):e105705. https://doi.org/10.15252/embj.2020105705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Crickard JB, Moevus CJ, Kwon Y, Sung P, Greene EC (2020) Rad54 drives ATP hydrolysis-dependent DNA sequence alignment during homologous recombination. Cell 181(6):1380–1394.e1318. https://doi.org/10.1016/j.cell.2020.04.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. De Tullio L, Kaniecki K, Greene EC (2018) Single-stranded DNA curtains for studying the Srs2 helicase using total internal reflection fluorescence microscopy. Methods Enzymol 600:407–437. https://doi.org/10.1016/bs.mie.2017.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hilario J, Kowalczykowski SC (2010) Visualizing protein-DNA interactions at the single-molecule level. Curr Opin Chem Biol 14(1):15–22. https://doi.org/10.1016/j.cbpa.2009.10.035

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank the members of the Crickard lab for critical reading of the manuscript. This research was funded by NIH Grant R35GM142457 (J.B.C).

Conflict of Interest

The author declares no competing conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Brooks Crickard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Crickard, J.B. (2023). Single Molecule Imaging of DNA–Protein Interactions Using DNA Curtains. In: Simoes-Costa, M. (eds) DNA-Protein Interactions. Methods in Molecular Biology, vol 2599. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2847-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2847-8_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2846-1

  • Online ISBN: 978-1-0716-2847-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics