Skip to main content

Exosomal MicroRNAs: Comprehensive Methods from Exosome Isolation to miRNA Extraction and Purity Analysis

  • Protocol
  • First Online:
MicroRNA Profiling

Abstract

Exosomes are extracellular vesicles secreted by cells with a key role in a wide range of biological processes including cancer. These vesicles are involved in intercellular communication and deliver diverse cargo molecules, including miRNAs (exo-miRNAs), to recipient cells affecting their physiology. Exo-miRNAs have a role in promoting tumor, progression, metastatization, and remodeling of tumor microenvironment, therefore making them interesting biomarkers to study.

Here we provide a detailed technical protocol for exosome isolation (which can be applied to cell culture as well as physiological fluids), validation of their vesicular identity, miRNA extraction, and quantitative and qualitative analysis to evaluate the sample purity and concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 29 January 2023

    In the original version of this book, the first and the last names of the authors of Chapter 5 were in a flipped format (D’Agostino Erika, Muro Annamaria, Sgueglia Giulia, Massaro Crescenzo, Dell’Aversana Carmela, and Altucci Lucia). This has been rectified in the updated version of this book.

References

  1. Lin J, Li J, Huang B, Liu J, Chen X, Chen XM et al (2015) Exosomes: novel biomarkers for clinical diagnosis. ScientificWorldJournal 2015:657086. https://doi.org/10.1155/2015/657086

    Article  Google Scholar 

  2. Maia J, Caja S, Strano Moraes MC, Couto N, Costa-Silva B (2018) Exosome-based cell-cell communication in the tumor microenvironment. Front Cell Dev Biol 6:18. https://doi.org/10.3389/fcell.2018.00018

    Article  Google Scholar 

  3. Cermelli S, Ruggieri A, Marrero JA, Ioannou GN, Beretta L (2011) Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS One 6(8):e23937. https://doi.org/10.1371/journal.pone.0023937

    Article  CAS  Google Scholar 

  4. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13(4):423–433. https://doi.org/10.1038/ncb2210

    Article  CAS  Google Scholar 

  5. Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M et al (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107(6):810–817. https://doi.org/10.1161/CIRCRESAHA.110.226357

    Article  CAS  Google Scholar 

  6. O'Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 9:402. https://doi.org/10.3389/fendo.2018.00402

    Article  CAS  Google Scholar 

  7. Dell'Aversana C, Giorgio C, D'Amato L, Lania G, Matarese F, Saeed S et al (2017) miR-194-5p/BCLAF1 deregulation in AML tumorigenesis. Leukemia 31(11):2315–2325. https://doi.org/10.1038/leu.2017.64

    Article  CAS  Google Scholar 

  8. Smolarz M, Widlak P (2021) Serum exosomes and their miRNA load-a potential biomarker of lung cancer. Cancers (Basel) 13(6). https://doi.org/10.3390/cancers13061373

  9. Ahmadi M, Rezaie J (2020) Tumor cells derived-exosomes as angiogenenic agents: possible therapeutic implications. J Transl Med 18(1):249. https://doi.org/10.1186/s12967-020-02426-5

    Article  CAS  Google Scholar 

  10. Zhou M, Chen J, Zhou L, Chen W, Ding G, Cao L (2014) Pancreatic cancer derived exosomes regulate the expression of TLR4 in dendritic cells via miR-203. Cell Immunol 292(1–2):65–69. https://doi.org/10.1016/j.cellimm.2014.09.004

    Article  CAS  Google Scholar 

  11. Jiang M, Zhang W, Zhang R, Liu P, Ye Y, Yu W et al (2020) Cancer exosome-derived miR-9 and miR-181a promote the development of early-stage MDSCs via interfering with SOCS3 and PIAS3 respectively in breast cancer. Oncogene 39(24):4681–4694. https://doi.org/10.1038/s41388-020-1322-4

    Article  CAS  Google Scholar 

  12. Ding G, Zhou L, Qian Y, Fu M, Chen J, Chen J et al (2015) Pancreatic cancer-derived exosomes transfer miRNAs to dendritic cells and inhibit RFXAP expression via miR-212-3p. Oncotarget 6(30):29877–29888. https://doi.org/10.18632/oncotarget.4924

    Article  Google Scholar 

  13. Zhou J, Li X, Wu X, Zhang T, Zhu Q, Wang X et al (2018) Exosomes released from tumor-associated macrophages transfer miRNAs that induce a Treg/Th17 cell imbalance in epithelial ovarian cancer. Cancer Immunol Res 6(12):1578–1592. https://doi.org/10.1158/2326-6066.CIR-17-0479

    Article  CAS  Google Scholar 

  14. Yin Y, Cai X, Chen X, Liang H, Zhang Y, Li J et al (2014) Tumor-secreted miR-214 induces regulatory T cells: a major link between immune evasion and tumor growth. Cell Res 24(10):1164–1180. https://doi.org/10.1038/cr.2014.121

    Article  CAS  Google Scholar 

  15. Guo X, Qiu W, Liu Q, Qian M, Wang S, Zhang Z et al (2018) Immunosuppressive effects of hypoxia-induced glioma exosomes through myeloid-derived suppressor cells via the miR-10a/Rora and miR-21/Pten pathways. Oncogene 37(31):4239–4259. https://doi.org/10.1038/s41388-018-0261-9

    Article  CAS  Google Scholar 

  16. Cooks T, Pateras IS, Jenkins LM, Patel KM, Robles AI, Morris J et al (2018) Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. Nat Commun 9(1):771. https://doi.org/10.1038/s41467-018-03224-w

    Article  CAS  Google Scholar 

  17. Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T et al (2018) Hypoxic tumor-derived Exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kgamma to promote pancreatic cancer metastasis. Cancer Res 78(16):4586–4598. https://doi.org/10.1158/0008-5472.CAN-17-3841

    Article  CAS  Google Scholar 

  18. Fong MY, Zhou W, Liu L, Alontaga AY, Chandra M, Ashby J et al (2015) Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol 17(2):183–194. https://doi.org/10.1038/ncb3094

    Article  CAS  Google Scholar 

  19. Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE et al (2010) MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328(5985):1566–1569. https://doi.org/10.1126/science.1189123

    Article  CAS  Google Scholar 

  20. Aucher A, Rudnicka D, Davis DM (2013) MicroRNAs transfer from human macrophages to hepato-carcinoma cells and inhibit proliferation. J Immunol 191(12):6250–6260. https://doi.org/10.4049/jimmunol.1301728

    Article  CAS  Google Scholar 

  21. Xu XD, Wu XH, Fan YR, Tan B, Quan Z, Luo CL (2014) Exosome-derived microRNA-29c induces apoptosis of BIU-87 cells by down regulating BCL-2 and MCL-1. Asian Pac J Cancer Prev 15(8):3471–3476. https://doi.org/10.7314/apjcp.2014.15.8.3471

    Article  Google Scholar 

  22. Lim PK, Bliss SA, Patel SA, Taborga M, Dave MA, Gregory LA et al (2011) Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res 71(5):1550–1560. https://doi.org/10.1158/0008-5472.CAN-10-2372

    Article  CAS  Google Scholar 

  23. Massaro C, Sgueglia G, Frattolillo V, Baglio SR, Altucci L, Dell'Aversana C (2020) Extracellular vesicle-based nucleic acid delivery: current advances and future perspectives in cancer therapeutic strategies. Pharmaceutics 12(10). https://doi.org/10.3390/pharmaceutics12100980

  24. Li I, Nabet BY (2019) Exosomes in the tumor microenvironment as mediators of cancer therapy resistance. Mol Cancer 18(1):32. https://doi.org/10.1186/s12943-019-0975-5

    Article  Google Scholar 

  25. Corcoran C, Rani S, O'Driscoll L (2014) miR-34a is an intracellular and exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate cancer progression. Prostate 74(13):1320–1334. https://doi.org/10.1002/pros.22848

    Article  CAS  Google Scholar 

  26. Wei Y, Lai X, Yu S, Chen S, Ma Y, Zhang Y et al (2014) Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells. Breast Cancer Res Treat 147(2):423–431. https://doi.org/10.1007/s10549-014-3037-0

    Article  CAS  Google Scholar 

  27. Rotelli MT, Di Lena M, Cavallini A, Lippolis C, Bonfrate L, Chetta N et al (2015) Fecal microRNA profile in patients with colorectal carcinoma before and after curative surgery. Int J Color Dis 30(7):891–898. https://doi.org/10.1007/s00384-015-2248-0

    Article  CAS  Google Scholar 

  28. Eichelser C, Stuckrath I, Muller V, Milde-Langosch K, Wikman H, Pantel K et al (2014) Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget 5(20):9650–9663. https://doi.org/10.18632/oncotarget.2520

    Article  Google Scholar 

  29. Huang X, Yuan T, Liang M, Du M, Xia S, Dittmar R et al (2015) Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol 67(1):33–41. https://doi.org/10.1016/j.eururo.2014.07.035

    Article  CAS  Google Scholar 

  30. Gurunathan S, Kang MH, Jeyaraj M, Qasim M, Kim JH (2019) Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cell 8(4). https://doi.org/10.3390/cells8040307

  31. Willms E, Johansson HJ, Mager I, Lee Y, Blomberg KE, Sadik M et al (2016) Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep 6:22519. https://doi.org/10.1038/srep22519

    Article  CAS  Google Scholar 

  32. Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM et al (2012) Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56(2):293–304. https://doi.org/10.1016/j.ymeth.2012.01.002

    Article  CAS  Google Scholar 

  33. Grasso L, Wyss R, Weidenauer L, Thampi A, Demurtas D, Prudent M et al (2015) Molecular screening of cancer-derived exosomes by surface plasmon resonance spectroscopy. Anal Bioanal Chem 407(18):5425–5432. https://doi.org/10.1007/s00216-015-8711-5

    Article  CAS  Google Scholar 

  34. Wu Y, Deng W, Klinke DJ 2nd. (2015) Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst 140(19):6631–6642. https://doi.org/10.1039/c5an00688k

    Article  CAS  Google Scholar 

  35. Jung MK, Mun JY (2018) Sample preparation and imaging of exosomes by Trasmission electron microscopy. J Vis Exp (131):56482. https://doi.org/10.3791/56482

  36. Xia X, Wang Y, Huang Y, Zhang H, Lu H, Zheng JC (2019) Exosomal miRNAs in central nervous system diseases: biomarkers, pathological mediators, protective factors and therapeutic agents. Prog Neurobiol 183:101694. https://doi.org/10.1016/j.pneurobio.2019.101694

    Article  CAS  Google Scholar 

  37. Yousefi H, Maheronnaghsh M, Molaei F, Mashouri L, Reza Aref A, Momeny M et al (2020) Long noncoding RNAs and exosomal lncRNAs: classification, and mechanisms in breast cancer metastasis and drug resistance. Oncogene 39(5):953–974. https://doi.org/10.1038/s41388-019-1040-y

    Article  CAS  Google Scholar 

  38. Bebelman MP, Smit MJ, Pegtel DM, Baglio SR (2018) Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther 188:1–11. https://doi.org/10.1016/j.pharmthera.2018.02.013

    Article  CAS  Google Scholar 

  39. Gao G, Li C, Zhu J, Wang Y, Huang Y, Zhao S et al (2020) Glutaminase 1 regulates Neuroinflammation after cerebral ischemia through enhancing microglial activation and pro-inflammatory exosome release. Front Immunol 11:161. https://doi.org/10.3389/fimmu.2020.00161

    Article  CAS  Google Scholar 

  40. Ma Y, Wang K, Pan J, Fan Z, Tian C, Deng X et al (2019) Induced neural progenitor cells abundantly secrete extracellular vesicles and promote the proliferation of neural progenitors via extracellular signal-regulated kinase pathways. Neurobiol Dis 124:322–334. https://doi.org/10.1016/j.nbd.2018.12.003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carmela Dell’Aversana or Lucia Altucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

D’Agostino, E., Muro, A., Sgueglia, G., Massaro, C., Dell’Aversana, C., Altucci, L. (2023). Exosomal MicroRNAs: Comprehensive Methods from Exosome Isolation to miRNA Extraction and Purity Analysis. In: Rani, S. (eds) MicroRNA Profiling. Methods in Molecular Biology, vol 2595. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2823-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2823-2_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2822-5

  • Online ISBN: 978-1-0716-2823-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics