Skip to main content

Validating Antibody Specificities for Immunohistochemistry by Protein Blotting

  • Protocol
  • First Online:
Signal Transduction Immunohistochemistry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2593))

  • 872 Accesses

Abstract

Optimized antibody reagents are important in research, and erratic antibody performance leads to variability in immunoassays. Specificity of antibodies binding the protein of interest is vital to obtain accurate results. Recommendations for validation and use of primary antibodies are unique to each type of immunoassay as the antibodies’ performance is greatly affected by the assay context. Immunoblotting procedures have been used along with other important antibody-based detection methods like enzyme-linked immunosorbent assay and immunohistochemistry to confirm results in research and diagnostic testing. Specificity of antibodies employed for immunohistochemical studies is of critical importance. Therefore, the use of western blotting is imperative to address the specificity of antibodies with/without siRNA knockdown of proteins of interest or with the use of peptide inhibitors to inhibit the binding of specific antibodies to the target protein. In spite of its overall simplicity, western blotting or protein blotting is a powerful procedure for immunodetection of proteins, especially those that are of low abundance, following electrophoretic separation. The usefulness of this procedure stems from its ability to provide simultaneous resolution of multiple immunogenic antigens within a sample for detection by specific antibodies. Protein blotting has evolved greatly over the last few decades, and researchers have a variety of ways and means to carry out this procedure to validate antibodies for immunohistochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to NC sheets: procedure and applications. Proc Natl Acad Sci U S A 76:4350–4354

    Article  CAS  Google Scholar 

  2. LeGendre N (1990) Immobilon-P transfer membrane: applications and utility in protein biochemical analysis. BioTechniques 9(6 Suppl):788–805. Review

    CAS  Google Scholar 

  3. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  CAS  Google Scholar 

  4. Alwine JC, Kemp DJ, Stark GR (1977) Method for detection of specific RNAs in agar gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci U S A 74:5350–5354

    Article  CAS  Google Scholar 

  5. Burnette WN (1981) “Western Blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate—polyacrylamide gels to unmodified NC and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112:195–203

    Article  CAS  Google Scholar 

  6. Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  7. Kost J, Liu L-S, Ferreira J, Langer R (1994) Enhanced protein blotting from PhastGel media to membranes by irradiation of low-intensity. Anal Biochem 216:27–32

    Article  CAS  Google Scholar 

  8. Gershoni JM, Palade GE (1982) Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to a positively charged membrane filter. Anal Biochem 124:396–405

    Article  CAS  Google Scholar 

  9. Gershoni JM (1988) Protein blotting: a manual. Methods Biochem Anal 33:1–58. Review

    CAS  Google Scholar 

  10. Kurien BT, Scofield RH (2006) Western blotting. Methods 38:283–293

    Article  CAS  Google Scholar 

  11. Karey KP, Sirbasku DA (1989) Glutaraldehyde fixation increases retention of low molecular weight proteins (growth factors) transferred to nylon membranes for Western blot analysis. Anal Biochem 178:255–259

    Article  CAS  Google Scholar 

  12. Harlow E, Lane D (1988) Immunoblotting. In: Antibodies. A laboratory manual. Cold Spring Harbor Laboratory, New York, p 485

    Google Scholar 

  13. Renart J, Reiser J, Stark GR (1979) Transfer of proteins from gels to diazobenzyloxymethyl paper and detection with anti-sera: a method for studying antibody specificity and antigen structure. Proc Natl Acad Sci U S A 76:3116–3120

    Article  CAS  Google Scholar 

  14. Elkon KB, Jankowski PW, Chu JL (1984) Blotting intact immunoglobulins and other high-molecular-weight proteins after composite agarose-polyacrylamide gel electrophoresis. Anal Biochem 140:208–213

    Article  CAS  Google Scholar 

  15. Gibson W (1981) Protease-facilitated transfer of high-molecular-weight proteins during electrotransfer to NC. Anal Biochem 118:1–3

    Article  CAS  Google Scholar 

  16. Bolt MW, Mahoney PA (1997) High efficiency blotting of proteins of diverse sizes following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Anal Biochem 247:185–192

    Article  CAS  Google Scholar 

  17. Kurien BT, Scofield RH (2002) Heat mediated, ultra-rapid electrophoretic transfer of high and low molecular weight proteins to NC membranes. J Immunol Methods 266:127–133

    Article  CAS  Google Scholar 

  18. Gershoni JM, Palade GE (1983) Protein blotting: principles and applications. Anal Biochem 131:1–15

    Article  CAS  Google Scholar 

  19. Thornton DJ, Carlstedt I, Sheehan JK (1996) Identification of glycoproteins on nitrocellulose membranes and gels. Mol Biotechnol 5:171–176

    Article  CAS  Google Scholar 

  20. Tonkinson JL, Stillman B (2002) NC: a tried and true polymer finds utility as a post-genomic substrate. Front Biosci 7:c1–c12. Review

    CAS  Google Scholar 

  21. Lauritzen E, Masson M, Rubin I et al (1993) Peptide dot immunoassay and immunoblotting: electroblotting from aluminum thin-layer chromatography plates and isoelectric focusing gels to activated NC. Electrophoresis 14:852–859

    Article  CAS  Google Scholar 

  22. Masson M, Lauritzen E, Holm A (1993) Chemical activation of NC membranes for peptide antigen-antibody binding studies: direct substitution of the nitrate group with diaminoalkane. Electrophoresis 14:860–865

    Article  CAS  Google Scholar 

  23. Too CK, Murphy PR, Croll RP (1994) Western blotting of formaldehyde-fixed neuropeptides as small as 400 daltons on gelatin-coated NC paper. Anal Biochem 219:341–348

    Article  CAS  Google Scholar 

  24. Coull JM, Dixon JD, Laursen RA et al (1989) Development of membrane supports for the solid-phase sequence analysis of proteins and peptides. In: Witmann-Liebold B (ed) Methods in protein sequence analysis. Springer-Berlag, Berlin, pp 69–78

    Chapter  Google Scholar 

  25. Matsudaira P (1987) Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem 262:10035–10038

    Article  CAS  Google Scholar 

  26. Pluskal MF, Przekop MB, Kavonian MR et al (1986) BioTechniques 4:272–282

    CAS  Google Scholar 

  27. Xu QY, Shively JE (1988) Microsequence analysis of peptides and proteins. VIII. Improved electroblotting of proteins onto membranes and derivatized glass-fiber sheets. Anal Biochem 170:19–30

    Article  CAS  Google Scholar 

  28. Kittler JM, Meisler NT, Viceps-Madore D et al (1984) A general immunochemical method for detecting proteins on blots. Anal Biochem 137:210–216

    Article  CAS  Google Scholar 

  29. Hughes JH, Mack K, Hamparian VV (1988) India ink staining of proteins on nylon and hydrophobic membranes. Anal Biochem 173:18–25

    Article  CAS  Google Scholar 

  30. Tovey ER, Baldo BA (1989) Protein binding to NC, nylon and PVDF membranes in immunoassays and electroblotting. J Biochem Biophys Methods 19:169–183

    Article  CAS  Google Scholar 

  31. Moore C (2009) Introduction to western blotting. AbD serotec

    Google Scholar 

  32. Michele Signore K, Reeder A (2012) Antibody validation by Western blotting. Methods Mol Biol 823:139–155

    Article  Google Scholar 

  33. Kurien BT, Scofield RH (1997) Multiple immunoblots after non- electrophoretic bidirectional transfer of a single SDS-PAGE gel with multiple antigens. J Immunol Methods 205:91–94

    Article  CAS  Google Scholar 

  34. Otter T, King SM, Witman GB (1987) A two-step procedure for efficient electro transfer of both high-molecular weight (greater than 400,000) and low-molecular weight (less than 20,000) proteins. Anal Biochem 162:370–377

    Article  CAS  Google Scholar 

  35. Harper DR, Kit ML, Kangro HO (1990) Protein blotting: ten years on. J Virol Methods 30:25–39. Review

    Article  CAS  Google Scholar 

  36. Egger D, Bienz K (1994) Protein (western) blotting. Mol Biotechnol 1:289–305

    Article  CAS  Google Scholar 

  37. Wisdom GB (1994) Protein blotting. Methods Mol Biol 32:207–213

    CAS  Google Scholar 

  38. Kurien BT, Scofield RH (2003) Protein blotting: a review. J Immunol Methods 274:1–15. Review

    Article  CAS  Google Scholar 

  39. Kurien BT, Scofield RH (2015) Electrophoresis – blotting techniques. In: Reedijk J (ed) Elsevier reference module in chemistry, molecular sciences and chemical engineering. Elsevier, Waltham. https://doi.org/10.1016/B978-0-12-409547-2.11157-6

    Chapter  Google Scholar 

  40. Reinhart MP, Malamud D (1982) Protein transfer from isoelectric focusing gels: the native blot. Anal Biochem 123:229–235

    Article  CAS  Google Scholar 

  41. Jagersten C, Edstrom A, Olsson B et al (1988) Blotting from PhastGel media after horizontal sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Electrophoresis 9:662–665

    Article  CAS  Google Scholar 

  42. Kazemi M, Finkelstein RA (1990) Checkerboard immunoblotting (CBIB): an efficient, rapid, and sensitive method of assaying multiple antigen/antibody cross-reactivities. J Immunol Methods 128:143–146

    Article  CAS  Google Scholar 

  43. Heukeshoven J, Dernick R (1995) Effective blotting of ultrathin polyacrylamide gels anchored to a solid matrix. Electrophoresis 16:748–756

    Article  CAS  Google Scholar 

  44. Olsen I, Wiker HG (1998) Diffusion blotting for rapid production of multiple identical imprints from sodium dodecyl sulfate polyacrylamide gel electrophoresis on a solid support. J Immunol Methods 220:77–84

    Article  CAS  Google Scholar 

  45. Chen H, Chang GD (2001) Simultaneous immunoblotting analysis with activity gel electrophoresis in a single polyacrylamide gel. Electrophoresis 22:1894–1899

    Article  CAS  Google Scholar 

  46. Bowen B, Steinberg J, Laemmli UK et al (1980) The detection of DNA- binding proteins by protein blotting. Nucleic Acids Res 8:1–20

    Article  CAS  Google Scholar 

  47. Kurien BT, Scofield RH (2000) Association of neutropenia in systemic lupus erythematosus with anti-Ro and binding of an immunologically cross-reactive neutrophil membrane antigen. Clin Exp Immunol 120:209–217

    Article  CAS  Google Scholar 

  48. Kurien BT, Matsumoto H, Scofield RH (2001) Purification of tryptic peptides for mass spectrometry using polyvinylidene fluoride membrane. Indian J Biochem Biophys 38:274–276

    CAS  Google Scholar 

  49. Bischoff KM, Shi L, Kennelly PJ (1998) The detection of enzyme activity following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Anal Biochem 260:1–17. Review

    Article  CAS  Google Scholar 

  50. Peferoen M, Huybrechts R, De Loof A (1982) Vacuum-blotting: a new simple and efficient transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to NC. FEBS Lett 145:369–372

    Article  CAS  Google Scholar 

  51. Kurien BT, Scofield RH (2009) A brief review of other notable protein blotting methods. Methods Mol Biol 536:367–384. Review

    Article  CAS  Google Scholar 

  52. Kurien BT, Dorri Y, Dillon S et al (2011) An overview of Western blotting for determining antibody specificities for immunohistochemistry. Methods Mol Biol 717:55–67. Review

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biji T. Kurien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kurien, B.T., Scofield, R.H. (2023). Validating Antibody Specificities for Immunohistochemistry by Protein Blotting. In: Kalyuzhny, A.E. (eds) Signal Transduction Immunohistochemistry. Methods in Molecular Biology, vol 2593. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2811-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2811-9_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2810-2

  • Online ISBN: 978-1-0716-2811-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics