Skip to main content

Cloning and Expression of Metagenomic DNA in Streptomyces lividans and Its Subsequent Fermentation for Optimized Production

  • Protocol
  • First Online:
Metagenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2555))

  • 1186 Accesses

Abstract

The choice of an expression system for the metagenomic DNA of interest is of vital importance for the detection of any particular gene or gene cluster. Most of the screens to date have used the Gram-negative bacterium Escherichia coli as a host for metagenomic gene libraries. However, the use of E. coli introduces a potential host bias since only 40% of the enzymatic activities may be readily recovered by random cloning in E. coli. To recover some of the remaining 60%, alternative cloning hosts such as Streptomyces spp. have been used. Streptomycetes are high-GC Gram-positive bacteria belonging to the Actinomycetales and they have been studied extensively for more than 25 years as an alternative expression system. They are extremely well suited for the expression of DNA from other actinomycetes and genomes of high GC content. Furthermore, due to its high innate, extracellular secretion capacity, Streptomyces can be a better system than E. coli for the production of many extracellular proteins. In this article, an overview is given about the materials and methods for growth and successful expression and secretion of heterologous proteins from diverse origin using Streptomyces lividans as a host. More in detail, an overview is given about the protocols of transformation, type of plasmids used and of vectors useful for integration of DNA into the host chromosome, and accompanying cloning strategies. In addition, various control elements for gene expression including synthetic promoters are discussed, and methods to compare their strength are described. Stable and efficient marker-less integration of the gene of interest under the control of the promoter of choice into S. lividans chromosome via homologous recombination using pAMR23A-based system will be explained. Finally, a basic protocol for bench-top bioreactor experiments which can form the start in the production process optimization and up-scaling will be provided.

Authors Yuriy Rebets and Jan Kormanec are contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gabor EM, Alkema WB, Janssen DB (2004) Quantifying the accessibility of the metagenome by random expression cloning techniques. Environ Microbiol 6(9):879–886

    Article  CAS  PubMed  Google Scholar 

  2. Liebl W, Angelov A, Juergensen J et al (2014) Alternative hosts for functional (meta)genome analysis. Appl Microbiol Biotechnol 98(19):8099–8109

    Article  CAS  PubMed  Google Scholar 

  3. Rondon MR, August PR, Bettermann AD et al (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66(6):2541–2547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vrancken K, Anné J (2009) Secretory production of recombinant proteins by Streptomyces. Future Microbiol 4(2):181–188

    Article  CAS  PubMed  Google Scholar 

  5. Anne J, Vrancken K, Van Mellaert L et al (2014) Protein secretion biotechnology in Gram-positive bacteria with special emphasis on Streptomyces lividans. Biochim Biophys Acta 1843(8):1750–1761

    Article  CAS  PubMed  Google Scholar 

  6. Rückert C, Albersmeier A, Busche T et al (2015) Complete genome sequence of Streptomyces lividans TK24. J Biotechnol 199:21–22

    Article  PubMed  Google Scholar 

  7. Rebets Y, Tsolis KC, Guethmundsdottir EE et al (2018) Characterization of sigma factor genes in Streptomyces lividans TK24 using a genomic library-based approach for multiple gene deletions. Front Microbiol 9:3033

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gust B, Chandra G, Jakimowicz D et al (2004) Lambda red-mediated genetic manipulation of antibiotic-producing Streptomyces. Adv Appl Microbiol 54:107–128

    Article  CAS  PubMed  Google Scholar 

  9. Ahmed Y, Rebets Y, Estevez MR et al (2020) Engineering of Streptomyces lividans for heterologous expression of secondary metabolite gene clusters. Microb Cell Factories 19(1):5

    Article  CAS  Google Scholar 

  10. Wang GY, Graziani E, Waters B et al (2000) Novel natural products from soil DNA libraries in a streptomycete host. Org Lett 2(16):2401–2404

    Article  CAS  PubMed  Google Scholar 

  11. McMahon MD, Guan C, Handelsman J et al (2012) Metagenomic analysis of Streptomyces lividans reveals host-dependent functional expression. Appl Environ Microbiol 78(10):3622–3629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kang HS, Brady SF (2014) Mining soil metagenomes to better understand the evolution of natural product structural diversity: pentangular polyphenols as a case study. J Am Chem Soc 136(52):18111–18119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Courtois S, Cappellano CM, Ball M et al (2003) Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products. Appl Environ Microbiol 69(1):49–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sianidis G, Pozidis C, Becker F et al (2006) Functional large-scale production of a novel Jonesia sp. xyloglucanase by heterologous secretion from Streptomyces lividans. J Biotechnol 121(4):498–507

    Article  CAS  PubMed  Google Scholar 

  15. Meilleur C, Hupe JF, Juteau P et al (2009) Isolation and characterization of a new alkali-thermostable lipase cloned from a metagenomic library. J Ind Microbiol Biotechnol 36(6):853–861

    Article  CAS  PubMed  Google Scholar 

  16. Horinouchi S, Hara O, Beppu T (1983) Cloning of a pleiotropic gene that positively controls biosynthesis of A-factor, actinorhodin, and prodigiosin in Streptomyces coelicolor A3(2) and Streptomyces lividans. J Bacteriol 155(3):1238–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Macneil DJ, Gewain KM, Ruby CL et al (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111(1):61–68

    Article  CAS  PubMed  Google Scholar 

  18. Kieser T, Buttner MJ, Charter KF, Hopwood D (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich

    Google Scholar 

  19. Kieser T, Hopwood DA, Wright HM et al (1982) pIJ101, a multi-copy broad host-range Streptomyces plasmid – functional-analysis and development of DNA cloning vectors. Mol Gen Genet 185(2):223–238

    Article  CAS  PubMed  Google Scholar 

  20. Muth G, Wohlleben W, Pühler A (1988) The minimal replicon of the Streptomyces ghanaensis plasmid pSG5 identified by subcloning and Tn5 mutagenesis. Mol Gen Genet 211(3):424–429

    Article  CAS  PubMed  Google Scholar 

  21. Schrempf H, Goebel W (1977) Characterization of a plasmid from Streptomyces coelicolor A3(2). J Bacteriol 131(1):251–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lydiate DJ, Malpartida F, Hopwood DA (1985) The Streptomyces plasmid SCP2star – its functional analysis and development into useful cloning vectors. Gene 35(3):223–235

    Article  CAS  PubMed  Google Scholar 

  23. Bibb MJ, Hopwood DA (1981) Genetic studies of the fertility plasmid Scp2 and its Scp2 star variants in Streptomyces coelicolor A3(2). J Gen Microbiol 126(Oct):427–442

    Google Scholar 

  24. Hu ZH, Hopwood DA, Hutchinson CR (2003) Enhanced heterologous polyketide production in Streptomyces by exploiting plasmid co-integration. J Ind Microbiol Biotechnol 30(8):516–522

    Article  CAS  PubMed  Google Scholar 

  25. Fong R, Vroom JA, Hu ZH et al (2007) Characterization of a large, stable, high-copy-number Streptomyces plasmid that requires stability and transfer functions for heterologous polyketide overproduction. Appl Environ Microbiol 73(12):4094–4094

    Article  CAS  PubMed Central  Google Scholar 

  26. Kuhstoss S, Rao RN (1991) Analysis of the integration function of the streptomycete bacteriophage Phi C31. J Mol Biol 222(4):897–908

    Article  CAS  PubMed  Google Scholar 

  27. Combes P, Till R, Bee S et al (2002) The Streptomyces genome contains multiple pseudo-attB sites for the phi C31-encoded site-specific recombination system. J Bacteriol 184(20):5746–5752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bilyk B, Luzhetskyy A (2014) Unusual site-specific DNA integration into the highly active pseudo-attB of the Streptomyces albus J1074 genome. Appl Microbiol Biotechnol 98(11):5095–5104

    Article  CAS  PubMed  Google Scholar 

  29. Anné J, Wohlleben W, Burkardt HJ et al (1984) Morphological and molecular characterization of several actinophages isolated from soil which lyse Streptomyces cattleya or Streptomyces venezuelae. J Gen Microbiol 130(Oct):2639–2649

    PubMed  Google Scholar 

  30. Van Mellaert L, Mei LJ, Lammertyn E et al (1998) Site-specific integration of bacteriophage VWB genome into Streptomyces venezuelae and construction of a VWB-based integrative vector. Microbiology-Sgm 144:3351–3358

    Article  Google Scholar 

  31. Gregory MA, Till R, Smith MCM (2003) Integration site for streptomyces phage phi BT1 and development of site-specific integrating vectors. J Bacteriol 185(17):5320–5323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fayed B, Younger E, Taylor G et al (2014) A novel Streptomyces spp. integration vector derived from the S. venezuelae phage, SV1. BMC Biotechnol 14:51

    Article  PubMed  PubMed Central  Google Scholar 

  33. Morita K, Yamamoto T, Fusada N et al (2009) The site-specific recombination system of actinophage TG1. FEMS Microbiol Lett 297(2):234–240

    Article  CAS  PubMed  Google Scholar 

  34. Pernodet JL, Simonet JM, Guerineau M (1984) Plasmids in different strains of Streptomyces ambofaciens – free and integrated form of plasmid pSAM2. Mol Gen Genet 198(1):35–41

    Article  CAS  PubMed  Google Scholar 

  35. Boccard F, Pernodet JL, Friedmann A et al (1988) Site-specific integration of plasmid Psam2 in Streptomyces lividans and Streptomyces ambofaciens. Mol Gen Genet 212(3):432–439

    Article  CAS  Google Scholar 

  36. Smokvina T, Mazodier P, Boccard F et al (1990) Construction of a series of pSAM2-based integrative vectors for use in actinomycetes. Gene 94(1):53–59

    Article  CAS  PubMed  Google Scholar 

  37. West SC (2003) Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol 4(6):435–445

    Article  CAS  PubMed  Google Scholar 

  38. Bierman M, Logan R, Obrien K et al (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116(1):43–49

    Article  CAS  PubMed  Google Scholar 

  39. Knirschova R, Novakova R, Mingyar E et al (2015) Utilization of a reporter system based on the blue pigment indigoidine biosynthetic gene bpsA for detection of promoter activity and deletion of genes in Streptomyces. J Microbiol Methods 113:1–3

    Article  CAS  PubMed  Google Scholar 

  40. Cundliffe E (1978) Mechanism of resistance to thiostrepton in the producing-organism Streptomyces azureus. Nature 272(5656):792–795

    Article  CAS  PubMed  Google Scholar 

  41. Stanzak R, Matsushima P, Baltz RH et al (1986) Cloning and expression in Streptomyces lividans of custered erythromycin biosynthesis genes from Streptomyces erythreus. Biotechnology 4(3):229–232

    CAS  Google Scholar 

  42. Labigneroussel A, Harel J, Tompkins L (1987) Gene transfer from Escherichia coli to Campylobacter species – development of shuttle vectors for genetic analysis of Campylobacter jejuni. J Bacteriol 169(11):5320–5323

    Article  CAS  Google Scholar 

  43. Mazodier P, Petter R, Thompson C (1989) Intergeneric conjugation between Escherichia coli and Streptomyces species. J Bacteriol 171(6):3583–3585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Flett F, Mersinias V, Smith CP (1997) High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett 155(2):223–229

    Article  CAS  PubMed  Google Scholar 

  45. Bibb MJ, Janssen GR, Ward JM (1985) Cloning and analysis of the promoter region of the erythromycin resistance gene (ErmE) of Streptomyces erythraeus. Gene 38(1–3):215–226

    Article  CAS  PubMed  Google Scholar 

  46. Bibb MJ, White J, Ward JM et al (1994) The mRNA for the 23S rRNA methylase encoded by the ermE gene of Saccharopolyspora erythraea is translated in the absence of a conventional ribosome-binding site. Mol Microbiol 14(3):533–545

    Article  CAS  PubMed  Google Scholar 

  47. Shao ZY, Rao GD, Li C et al (2013) Refactoring the silent spectinabilin gene cluster using a plug-and-play scaffold. ACS Synth Biol 2(11):662–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Luo YZ, Zhang L, Barton KW et al (2015) Systematic identification of a panel of strong constitutive promoters from Streptomyces albus. ACS Synth Biol 4(9):1001–1010

    Article  CAS  PubMed  Google Scholar 

  49. Wang WS, Li X, Wang J et al (2013) An engineered strong promoter for streptomycetes. Appl Environ Microbiol 79(14):4484–4492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bai CX, Zhang Y, Zhao XJ et al (2015) Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products in Streptomyces. Proc Natl Acad Sci U S A 112(39):12181–12186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Seghezzi N, Amar P, Koebmann B et al (2011) The construction of a library of synthetic promoters revealed some specific features of strong Streptomyces promoters. Appl Microbiol Biotechnol 90(2):615–623

    Article  CAS  PubMed  Google Scholar 

  52. Siegl T, Tokovenko B, Myronovskyi M et al (2013) Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes. Metab Eng 19:98–106

    Article  CAS  PubMed  Google Scholar 

  53. Murakami T, Holt TG, Thompson CJ (1989) Thiostrepton-induced gene expression in Streptomyces lividans. J Bacteriol 171(3):1459–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kuhstoss S, Rao RN (1991) A thiostrepton-inducible expression vector for use in Streptomyces spp. Gene 103(1):97–99

    Article  CAS  PubMed  Google Scholar 

  55. Schmittjohn T, Engels JW (1992) Promoter constructions for efficient secretion expression in Streptomyces lividans. Appl Microbiol Biotechnol 36(4):493–498

    CAS  Google Scholar 

  56. Chiu ML, Folcher M, Katoh T et al (1999) Broad spectrum thiopeptide recognition specificity of the Streptomyces lividans TipAL protein and its role in regulating gene expression. J Biol Chem 274(29):20578–20586

    Article  CAS  PubMed  Google Scholar 

  57. Rodriguez-Garcia A, Combes P, Perez-Redondo R et al (2005) Natural and synthetic tetracycline-inducible promoters for use in the antibiotic-producing bacteria Streptomyces. Nucleic Acids Res 33(9):e87

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lussier FX, Denis F, Shareck F (2010) Adaptation of the highly productive T7 expression system to Streptomyces lividans. Appl Environ Microbiol 76(3):967–970

    Article  CAS  PubMed  Google Scholar 

  59. Herai S, Hashimoto Y, Higashibata H et al (2004) Hyper-inducible expression system for streptomycetes. Proc Natl Acad Sci U S A 101(39):14031–14035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Horbal L, Fedorenko V, Luzhetskyy A (2014) Novel and tightly regulated resorcinol and cumate-inducible expression systems for Streptomyces and other actinobacteria. Appl Microbiol Biotechnol 98(20):8641–8655

    Article  CAS  PubMed  Google Scholar 

  61. Pulido D, Jimenez A (1987) Optimization of gene expression in Streptomyces lividans by a transcription terminator. Nucleic Acids Res 15(10):4227–4240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ward JM, Janssen GR, Kieser T et al (1986) Construction and characterization of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Mol Gen Genet 203(3):468–478

    Article  CAS  PubMed  Google Scholar 

  63. Scholtissek S, Grosse F (1987) A cloning cartridge of lambda-to terminator. Nucleic Acids Res 15(7):3185–3185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Myronovskyi M, Rosenkranzer B, Luzhetskyy A (2014) Iterative marker excision system. Appl Microbiol Biotechnol 98(10):4557–4570

    Article  CAS  PubMed  Google Scholar 

  65. Ausubel FM, Brent R, Kingston RE et al (1995) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  66. D’Huys PJ, Lule I, Van Hove S et al (2011) Amino acid uptake profiling of wild type and recombinant Streptomyces lividans TK24 batch fermentations. J Biotechnol 152(4):132–143

    Article  PubMed  Google Scholar 

  67. Daniels W, Bouvin J, Busche T et al (2018) Transcriptomic and fluxomic changes in Streptomyces lividans producing heterologous protein. Microb Cell Factories 17:19

    Article  Google Scholar 

  68. Hamed MB, Karamanou S, Olafsdottir S et al (2017) Large-scale production of a thermostable Rhodothermus marinus cellulase by heterologous secretion from Streptomyces lividans. Microb Cell Factories 16:12

    Article  Google Scholar 

  69. Eiteman MA, Altman E (2006) Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol 24(11):530–536

    Article  CAS  PubMed  Google Scholar 

  70. Villadsen J, Nielsen JH, Lidén G (2011) Bioreaction engineering principles, 3rd edn. Springer, New York, 561 p

    Google Scholar 

  71. Gabarro MV, Gullon S, Vicente RL et al (2017) A Streptomyces lividans SipY deficient strain as a host for protein production: standardization of operational alternatives for model proteins. J Chem Technol Biotechnol 92(1):217–223

    Article  CAS  Google Scholar 

  72. Koepff J, Keller M, Tsolis KC et al (2017) Fast and reliable strain characterization of Streptomyces lividans through micro-scale cultivation. Biotechnol Bioeng 114(9):2011–2022

    Article  CAS  PubMed  Google Scholar 

  73. Nowruzi K, Elkamel A, Scharer JM et al (2008) Development of a minimal defined medium for recombinant human interleukin-3 production by Streptomyces lividans 66. Biotechnol Bioeng 99(1):214–222

    Article  CAS  PubMed  Google Scholar 

  74. Gajzlerska W, Kurkowiak J, Turlo J (2015) Use of three-carbon chain compounds as biosynthesis precursors to enhance tacrolimus production in Streptomyces tsukubaensis. New Biotechnol 32(1):32–39

    Article  CAS  Google Scholar 

  75. Muhamadali H, Xu Y, Ellis DI et al (2015) Metabolomics investigation of recombinant mTNF alpha production in Streptomyces lividans. Microb Cell Factories 14:157

    Article  Google Scholar 

  76. Takors R (2012) Scale-up of microbial processes: impacts, tools and open questions. J Biotechnol 160(1–2):3–9

    Article  CAS  PubMed  Google Scholar 

  77. Doran PM (2013) Bioprocess engineering principles, 2nd edn. Elsevier/Academic, Amsterdam, Boston, viii, 919 p

    Google Scholar 

  78. Shuler ML, Kargi F (2002) Bioprocess engineering: basic concepts, 2nd edn. Prentice-Hall international series in the physical and chemical engineering sciences. Prentice Hall, Upper Saddle River, 553 p

    Google Scholar 

  79. Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27(2):153–176

    Article  CAS  PubMed  Google Scholar 

  80. Hodgson DA (1982) Glucose repression of carbon source uptake and metabolism in Streptomyces coelicolor A3(2) and its perturbation in mutants resistant to 2-deoxyglucose. J Gen Microbiol 128(Oct):2417–2430

    CAS  Google Scholar 

  81. Sun N, Wang ZB, Wu HP et al (2012) Construction of over-expression shuttle vectors in Streptomyces. Ann Microbiol 62(4):1541–1546

    Article  CAS  Google Scholar 

  82. Yang R, Hu Z, Deng Z et al (1998) Construction of Escherichia coli-Streptomyces shuttle expression vectors for gene expression in Streptomyces. Chin J Biotechnol 14(1):1–8

    PubMed  Google Scholar 

  83. Hatanaka T, Onaka H, Arima J et al (2008) pTONA5: a hyperexpression vector in Streptomycetes. Protein Expr Purif 62(2):244–248

    Article  CAS  PubMed  Google Scholar 

  84. Vara J, Lewandowskaskarbek M, Wang YG et al (1989) Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea (Streptomyces erythreus). J Bacteriol 171(11):5872–5881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zotchev S, Haugan K, Sekurova O et al (2000) Identification of a gene cluster for antibacterial polyketide-derived antibiotic biosynthesis in the nystatin producer Streptomyces noursei ATCC 11455. Microbiology 146(Pt 3):611–619

    Article  CAS  PubMed  Google Scholar 

  86. Fedoryshyn M, Petzke L, Welle E et al (2008) Marker removal from actinomycetes genome using Flp recombinase. Gene 419(1–2):43–47

    Article  CAS  PubMed  Google Scholar 

  87. Dyson PJ, Evans M (1996) pUCS75, a stable high-copy-number Streptomyces Escherichia coli shuttle vector which facilitates subcloning from pUC plasmid and M13 phage vectors. Gene 171(1):71–73

    Article  CAS  PubMed  Google Scholar 

  88. Herrmann S, Siegl T, Luzhetska M et al (2012) Site-specific recombination strategies for engineering actinomycete genomes. Appl Environ Microbiol 78(6):1804–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kuhstoss S, Richardson MA, Rao RN (1991) Plasmid cloning vectors that integrate site-specifically in Streptomyces spp. Gene 97(1):143–146

    Article  CAS  PubMed  Google Scholar 

  90. Sekurova ON, Brautaset T, Sletta H et al (2004) In vivo analysis of the regulatory genes in the nystatin biosynthetic gene cluster of Streptomyces noursei ATCC 11455 reveals their differential control over antibiotic biosynthesis. J Bacteriol 186(5):1345–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Richardson MA, Kuhstoss S, Solenberg P et al (1987) A new shuttle cosmid vector, pKS505, for streptomycetes – its use in the cloning of 3 different spiramycin-resistance genes from a Streptomyces ambofaciens library. Gene 61(3):231–241

    Article  CAS  PubMed  Google Scholar 

  92. Sosio M, Giusino F, Cappellano C et al (2000) Artificial chromosomes for antibiotic-producing actinomycetes. Nat Biotechnol 18(3):343–345

    Article  CAS  PubMed  Google Scholar 

  93. Jones AC, Gust B, Kulik A et al (2013) Phage P1-derived artificial chromosomes facilitate heterologous expression of the FK506 gene cluster. PLoS One 8(7):e69319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Miao V, Coeffet-LeGal MF, Brian P et al (2005) Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiology-Sgm 151:1507–1523

    Article  CAS  Google Scholar 

  95. Liu H, Jiang H, Haltli B et al (2009) Rapid cloning and heterologous expression of the meridamycin biosynthetic gene cluster using a versatile Escherichia coli-Streptomyces artificial chromosome vector, pSBAC. J Nat Prod 72(3):389–395

    Article  CAS  PubMed  Google Scholar 

  96. McDaniel R, Ebertkhosla S, Hopwood DA et al (1993) Engineered biosynthesis of novel polyketides. Science 262(5139):1546–1550

    Article  CAS  PubMed  Google Scholar 

  97. Van Mellaert L, Lammertyn E, Schacht S et al (1998) Molecular characterization of a novel subtilisin inhibitor protein produced by Streptomyces venezuelae CBS762.70. DNA Seq 9(1):19–30

    Article  PubMed  Google Scholar 

  98. Du D, Zhu Y, Wei JH et al (2013) Improvement of gougerotin and nikkomycin production by engineering their biosynthetic gene clusters. Appl Microbiol Biotechnol 97(14):6383–6396

    Article  CAS  PubMed  Google Scholar 

  99. Hindle Z, Smith CP (1994) Substrate induction and catabolite repression of the Streptomyces coelicolor glycerol operon are mediated through the GylR protein. Mol Microbiol 12(5):737–745

    Article  CAS  PubMed  Google Scholar 

  100. Kataoka M, Tatsuta T, Suzuki I et al (1996) Development of a temperature-inducible expression system for Streptomyces spp. J Bacteriol 178(18):5540–5542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gust B, Challis GL, Fowler K et al (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100(4):1541–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Commission’s Seventh Framework Program (FP7/2007–2013) under the grant agreement STREPSYNTH (Project No. 613877). In addition, Jan Kormanec was also supported by the Slovak Research and Development Agency under the contracts APVV-19-0009 and DO7RP-0037-12, and by the VEGA grant 2/0026/20 from Slovak Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Anné .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rebets, Y., Kormanec, J., Lutzhetskyy, A., Bernaerts, K., Anné, J. (2023). Cloning and Expression of Metagenomic DNA in Streptomyces lividans and Its Subsequent Fermentation for Optimized Production. In: Streit, W.R., Daniel, R. (eds) Metagenomics. Methods in Molecular Biology, vol 2555. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2795-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2795-2_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2794-5

  • Online ISBN: 978-1-0716-2795-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics