Skip to main content

Evaluation of hiPSC-Derived Muscle Progenitor Cell Transplantation in a Mouse Duchenne Muscular Dystrophy Model

  • Protocol
  • First Online:
Muscular Dystrophy Therapeutics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2587))

  • 1359 Accesses

Abstract

For cell therapy toward Duchenne muscle dystrophy (DMD), muscle progenitor cells derived from human-induced pluripotent stem cell (hiPSC-MuPCs) are recognized as a good candidate, and currently, cell transplantation of hiPSC-MuPCs is being tested with several DMD animal models. In this article, we describe an efficient method to dissociate, purify by cell sorting, transplant, and evaluate the transplantation efficacy of hiPSC-MuPCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biressi S, Filareto A, Rando TA (2020) Stem cell therapy for muscular dystrophies. J Clin Invest 130(11):5652–5664. https://doi.org/10.1172/JCI142031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Relaix F, Zammit PS (2012) Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 139(16):2845–2856. https://doi.org/10.1242/dev.069088

    Article  CAS  PubMed  Google Scholar 

  3. Gilbert PM, Havenstrite KL, Magnusson KEG et al (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329(5995):1078–1081. https://doi.org/10.1126/science.1191035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Montarras D, Morgan J, Collins C et al (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309:2064–2067

    Article  CAS  PubMed  Google Scholar 

  5. Sacco A, Doyonnas R, Kraft P et al (2008) Self-renewal and expansion of single transplanted muscle stem cells. Nature 456(7221):502–506. https://doi.org/10.1038/nature07384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cossu G, Previtali SC, Napolitano S et al (2015) Intra-arterial transplantation of HLA-matched donor mesoangioblasts in Duchenne muscular dystrophy. EMBO Mol Med 7(12):1513–1528. https://doi.org/10.15252/emmm.201505636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. https://doi.org/10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  8. Li HL, Fujimoto N, Sasakawa N et al (2015) Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Rep 4(1):143–154. https://doi.org/10.1016/j.stemcr.2014.10.013

    Article  CAS  Google Scholar 

  9. Zhao M, Tazumi A, Takayama S et al (2020) Induced fetal human muscle stem cells with high therapeutic potential in a mouse muscular dystrophy model. Stem Cell Rep. https://doi.org/10.1016/j.stemcr.2020.06.004

  10. Xi H, Fujiwara W, Gonzalez K et al (2017) In vivo human somitogenesis guides Somite development from hPSCs. Cell Rep 18(6):1573–1585. https://doi.org/10.1016/j.celrep.2017.01.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu J, Matthias N, Lo J et al (2018) A myogenic double-reporter human pluripotent stem cell line allows prospective isolation of skeletal muscle progenitors. Cell Rep 25(7):1966–1981.e1964. https://doi.org/10.1016/j.celrep.2018.10.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shelton M, Metz J, Liu J et al (2014) Derivation and expansion of PAX7-positive muscle progenitors from human and mouse embryonic stem cells. Stem Cell Rep 3(3):516–529. https://doi.org/10.1016/j.stemcr.2014.07.001

    Article  CAS  Google Scholar 

  13. Chal J, Oginuma M, Al Tanoury Z et al (2015) Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy. Nat Biotechnol 33(9):962–969. https://doi.org/10.1038/nbt.3297

    Article  CAS  PubMed  Google Scholar 

  14. Xi H, Langerman J, Sabri S et al (2020) A human skeletal muscle Atlas identifies the trajectories of stem and progenitor cells across development and from Human pluripotent stem cells. Cell Stem Cell 27:158–176.e110. https://doi.org/10.1016/j.stem.2020.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Incitti T, Magli A, Darabi R et al (2019) Pluripotent stem cell-derived myogenic progenitors remodel their molecular signature upon in vivo engraftment. Proc Natl Acad Sci U S A 116(10):4346–4351. https://doi.org/10.1073/pnas.1808303116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hicks MR, Hiserodt J, Paras K et al (2018) ERBB3 and NGFR mark a distinct skeletal muscle progenitor cell in human development and hPSCs. Nat Cell Biol 20(1):46–57. https://doi.org/10.1038/s41556-017-0010-2

    Article  CAS  PubMed  Google Scholar 

  17. Zhao M, Shoji E, Sakurai H (2018) In vitro evaluation of exon skipping in disease-specific iPSC-derived myocytes. Methods Mol Biol 1828:173–189. https://doi.org/10.1007/978-1-4939-8651-4_11

    Article  CAS  PubMed  Google Scholar 

  18. Nalbandian M, Zhao M, Sasaki-Honda M et al (2021) Characterization of hiPSC-derived muscle progenitors reveals distinctive markers for myogenic cell purification toward cell therapy. Stem Cell Rep. https://doi.org/10.1016/j.stemcr.2021.03.004

Download references

Acknowledgments

We would like to thank Peter Karagiannis for proofreading the manuscript and all lab members for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetoshi Sakurai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nalbandian, M., Zhao, M., Sakurai, H. (2023). Evaluation of hiPSC-Derived Muscle Progenitor Cell Transplantation in a Mouse Duchenne Muscular Dystrophy Model. In: Maruyama, R., Yokota, T. (eds) Muscular Dystrophy Therapeutics. Methods in Molecular Biology, vol 2587. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2772-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2772-3_28

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2771-6

  • Online ISBN: 978-1-0716-2772-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics