Skip to main content

Using “Galaxy-rCASC”: A Public Galaxy Instance for Single-Cell RNA-Seq Data Analysis

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2584))

Abstract

rCASC is a modular workflow providing an integrated environment for single-cell RNA-seq (scRNA-Seq) data analysis exploiting Docker containers to achieve functional and computational reproducibility. It was initially developed as an R package usable also through a Java GUI. However, the Java frontend cannot be employed when running rCASC on a remote server, a typical setup due to the significant computational resources commonly needed to analyze scRNA-Seq data.

To allow the use of rCASC through a graphical user interface on the client side and to harness the many advantages provided by the Galaxy platform, we have made rCASC available as a Galaxy set of tools, also providing a dedicated public instance of Galaxy named “Galaxy-rCASC.” To integrate rCASC into Galaxy, all its functions, originally implemented as a set of Docker containers to maximize reproducibility, have been extensively reworked to become independent from the R package functions that launch them in the original implementation. Furthermore, suitable Galaxy wrappers have been developed for most functions of rCASC. We provide a detailed reference document to the use of Galaxy-rCASC with insights and explanations on the platform functionalities, parameters, and output while guiding the reader through the typical rCASC analysis workflow of a scRNA-Seq dataset.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Choi YH, Kim JK (2019) Dissecting cellular heterogeneity using single-cell RNA sequencing. Mol Cells 42(3):189–199. https://doi.org/10.14348/molcells.2019.2446

    Article  CAS  Google Scholar 

  2. Kharchenko PV (2021) The triumphs and limitations of computational methods for scRNA-seq. Nat Methods 18:723–732. https://doi.org/10.1038/s41592-021-01171-x

  3. Buenrostro JD, Wu B, Chang HY, Greenleaf WJ (2015) ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol 109:21 29 21–21 29 29. https://doi.org/10.1002/0471142727.mb2129s109

    Article  Google Scholar 

  4. Yan F, Powell DR, Curtis DJ, Wong NC (2020) From reads to insight: a hitchhiker’s guide to ATAC-seq data analysis. Genome Biol 21(1):22. https://doi.org/10.1186/s13059-020-1929-3

  5. Rotem A, Ram O, Shoresh N, Sperling RA, Goren A, Weitz DA, Bernstein BE (2015) Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol 33(11):1165–1172. https://doi.org/10.1038/nbt.3383

  6. Li G, Liu Y, Zhang Y, Kubo N, Yu M, Fang R, Kellis M, Ren B (2019) Joint profiling of DNA methylation and chromatin architecture in single cells. Nat Methods 16(10):991–993. https://doi.org/10.1038/s41592-019-0502-z

    Article  CAS  Google Scholar 

  7. Alessandri L, Cordero F, Beccuti M, Arigoni M, Olivero M, Romano G, Rabellino S, Licheri N, De Libero G, Pace L, Calogero RA (2019) rCASC: reproducible classification analysis of single-cell sequencing data. Gigascience 8(9). https://doi.org/10.1093/gigascience/giz105

  8. Alessandri L, Cordero F, Beccuti M, Licheri N, Arigoni M, Olivero M, Di Renzo MF, Sapino A, Calogero R (2021) Sparsely-connected autoencoder (SCA) for single cell RNAseq data mining. NPJ Syst Biol Appl 7(1):1. https://doi.org/10.1038/s41540-020-00162-6

    Article  CAS  Google Scholar 

  9. Alessandri L, Ratto ML, Contaldo SG, Beccuti M, Cordero F, Arigoni M, Calogero RA (2021) Sparsely connected autoencoders: a multi-purpose tool for single cell omics analysis. Int J Mol Sci 22(23). https://doi.org/10.3390/ijms222312755

  10. Afgan E, Nekrutenko A, Grüning BA, Blankenberg D, Goecks J, Schatz MC, Ostrovsky AE, Mahmoud A, Lonie AJ, Syme A, Fouilloux A, Bretaudeau A, Nekrutenko A, Kumar A, Eschenlauer AC, DeSanto AD, Guerler A, Serrano-Solano B, Batut B, Grüning BA, Langhorst BW, Carr B, Raubenolt BA, Hyde CJ, Bromhead CJ, Barnett CB, Royaux C, Gallardo C, Blankenberg D, Fornika DJ, Baker D, Bouvier D, Clements D, de Lima Morais DA, Tabernero DL, Lariviere D, Nasr E, Afgan E, Zambelli F, Heyl F, Psomopoulos F, Coppens F, Price GR, Cuccuru G, Corguille´ GL, Von Kuster G, Akbulut GG, Rasche H, Hotz H-R, Eguinoa I, Makunin I, Ranawaka IJ, Taylor JP, Joshi J, Hillman-Jackson J, Goecks J, Chilton JM, Kamali K, Suderman K, Poterlowicz K, Yvan LB, Lopez-Delisle L, Sargent L, Bassetti ME, Tangaro MA, van den Beek M, C ˇech M, Bernt M, Fahrner M, Tekman M, Föll MC, Schatz MC, Crusoe MR, Roncoroni M, Kucher N, Coraor N, Stoler N, Rhodes N, Soranzo N, Pinter N, Goonasekera NA, Moreno PA, Videm P, Melanie P, Mandreoli P, Jagtap PD, Gu Q, Weber RJM, Lazarus R, Vorderman RHP, Hiltemann S, Golitsynskiy S, Garg S, Bray SA, Gladman SL, Leo S, Mehta SP, Griffin TJ, Jalili V, Yves V, Wen V, Nagampalli VK, Bacon WA, de Koning W, Maier W, Briggs PJ (2022) The Galaxy platform for accessible reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res 50(W1):W345–W351. https://doi.org/10.1093/nar/gkac247

  11. Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8(1):14049. https://doi.org/10.1038/ncomms14049

  12. Ordonez-Rueda D, Baying B, Pavlinic D, Alessandri L, Yeboah Y, Landry JJM, Calogero R, Benes V, Paulsen M (2020) Apoptotic cell exclusion and bias-free single-cell selection are important quality control requirements for successful single-cell sequencing applications. Cytometry A 97(2):156–167. https://doi.org/10.1002/cyto.a.23898

    Article  Google Scholar 

  13. Tweedie S, Braschi B, Gray K, Jones TEM, Seal RL, Yates B, Bruford EA (2021) Genenames.org: the HGNC and VGNC resources in 2021. Nucleic Acids Res 49(D1):D939–D946. https://doi.org/10.1093/nar/gkaa980

    Article  CAS  Google Scholar 

  14. Delaney C, Schnell A, Cammarata LV, Yao-Smith A, Regev A, Kuchroo VK, Singer M (2019) Combinatorial prediction of marker panels from single-cell transcriptomic data. Mol Syst Biol 15(10):e9005. https://doi.org/10.15252/msb.20199005

    Article  CAS  Google Scholar 

  15. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  Google Scholar 

  16. Tangaro MA, Mandreoli P, Chiara M, Donvito G, Antonacci M, Parisi A, Bianco A, Romano A, Bianchi DM, Cangelosi D, Uva P, Molineris I, Nosi V, Calogero RA, Alessandri L, Pedrini E, Mordenti M, Bonetti E, Sangiorgi L, Pesole G, Zambelli F (2021) Laniakea@ReCaS: exploring the potential of customisable Galaxy on-demand instances as a cloud-based service. BMC Bioinform 22(Suppl 15):544. https://doi.org/10.1186/s12859-021-04401-3

    Article  Google Scholar 

  17. Tangaro MA, Donvito G, Antonacci M, Chiara M, Mandreoli P, Pesole G, Zambelli F (2020) Laniakea: an open solution to provide Galaxy "on-demand" instances over heterogeneous cloud infrastructures. Gigascience 9(4). https://doi.org/10.1093/gigascience/giaa033

  18. Phipson B, Zappia L, Oshlack A (2017) Gene length and detection bias in single cell RNA sequencing protocols. F1000Res 6:595. https://doi.org/10.12688/f1000research.11290.1

    Article  CAS  Google Scholar 

  19. Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:14049. https://doi.org/10.1038/ncomms14049

    Article  CAS  Google Scholar 

  20. Satija R, Farrell JA, Gennert D, Schier AF, Regev A (2015) Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 33(5):495–502. https://doi.org/10.1038/nbt.3192

    Article  CAS  Google Scholar 

  21. Luecken MD, Theis FJ (2019) Current best practices in single-cell RNA-seq analysis: a tutorial. Mol Syst Biol 15(6):e8746. https://doi.org/10.15252/msb.20188746

    Article  Google Scholar 

  22. Blondel DB, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 10:P10008

    Article  Google Scholar 

  23. Rousseeuw PJ (1987) Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math. 2053–65. 0377042787901257. https://doi.org/10.10381016/0377-0427(87)90125-7

    Google Scholar 

  24. Pace L, Goudot C, Zueva E, Gueguen P, Burgdorf N, Waterfall JJ, Quivy JP, Almouzni G, Amigorena S (2018) The epigenetic control of stemness in CD8(+) T cell fate commitment. Science 359(6372):177–186. https://doi.org/10.1126/science.aah6499

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Zambelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mandreoli, P., Alessandri, L., Calogero, R.A., Tangaro, M.A., Zambelli, F. (2023). Using “Galaxy-rCASC”: A Public Galaxy Instance for Single-Cell RNA-Seq Data Analysis. In: Calogero, R.A., Benes, V. (eds) Single Cell Transcriptomics. Methods in Molecular Biology, vol 2584. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2756-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2756-3_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2755-6

  • Online ISBN: 978-1-0716-2756-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics