Skip to main content

Mouse Brain MRI: Including In Vivo, Ex Vivo, and fcMRI for the Study of Microcephaly

  • Protocol
  • First Online:
Microcephaly

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2583))

  • 436 Accesses

Abstract

With its sensitivity to soft tissue, MRI is a powerful tool for the study of the neuroanatomical manifestations of a variety of conditions, such as microcephaly-related morbidities that are not easily visualized by other imaging techniques, such as CT. In addition to structural imaging, more recently, researchers have found changes in brain function in a wide range of neurological conditions—highlighting the utility of MRI for the study of microcephaly.

In this methods chapter, basic mouse preparation and the acquisition of data for in vivo anatomical MRI will be discussed. Additionally, we will provide our protocol for the perfusion and fixation of brain tissue with gadolinium contrast agent. Following that, the process of optimization of system parameters will be shown for anatomical imaging of in vivo and ex vivo brain tissue. Lastly, the chapter will detail a protocol for fcMRI along with a discussion of considerations specific to functional imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edelman RR (2014) The history of MR imaging as seen through the pages of radiology. Radiology. https://doi.org/10.1148/radiol.14140706

  2. Ashwal S, Michelson D, Plawner L, Dobyns WB (2009) Practice parameter: evaluation of the child with microcephaly (an evidence-based review): report of the quality standards subcommittee of the American academy of neurology and the practice committee of the child neurology society. Neurology. https://doi.org/10.1212/WNL.0b013e3181b783f7

  3. Adachi Y, Poduri A, Kawaguch A, Yoon G, Salih MA, Yamashita F, Walsh CA, Barkovich AJ (2011) Congenital microcephaly with a simplified gyral pattern: associated findings and their significance. Am J Neuroradiol. https://doi.org/10.3174/ajnr.A2440

  4. National Research Council (US) and Institute of Medicine (US) Committee on the Mathematics and Physics of Emerging Dynamic Biomedical Imaging (1996) Mathematics and physics of emerging biomedical imaging. https://doi.org/10.17226/5066

    Book  Google Scholar 

  5. Williams SE, Garcia I, Crowther AJ, Li S, Stewart A, Liu H, Lough KJ, O'Neill S, Veleta K, Oyarzabal EA, Merrill JR, Shih Y-YI, Gershon TR (2015) Aspm sustains postnatal cerebellar neurogenesis and medulloblastoma growth in mice. Development. https://doi.org/10.1242/dev.124271

  6. Vezain M, Lecuyer M, Rubio M, Dupé V, Ratié L, David V, Pasquier L, Odent S, Coutant S, Tournier I, Trestard L, Adle-Biassette H, Vivien D, Frébourg T, Gonzalez BJ, Laquerrière A, Saugier-Veber P (2018) A de novo variant in ADGRL2 suggests a novel mechanism underlying the previously undescribed association of extreme microcephaly with severely reduced sulcation and rhombencephalosynapsis. Acta Neuropathol Commun. https://doi.org/10.1186/s40478-018-0610-5

  7. Assaf Y, Galron R, Shapira I, Nitzan A, Blumenfeld-Katzir T, Solomon AS, Holdengreber V, Wang ZQ, Shiloh Y, Barzilai A (2008) MRI evidence of white matter damage in a mouse model of Nijmegen breakage syndrome. Exp Neurol. https://doi.org/10.1016/j.expneurol.2007.09.021

  8. Holmes HE, Powell NM, Ma D, Ismail O, Harrison IF, Wells JA, Colgan N, O'Callaghan JM, Johnson RA, Murray TK, Ahmed Z, Heggenes M, Fisher A, Cardoso MJ, Modat M, O'Neill MJ, Collins EC, Fisher EMC, Ourselin S, Lythgoe MF (2017) Comparison of in vivo and ex vivo MRI for the detection of structural abnormalities in a mouse model of tauopathy. Front Neuroinform. https://doi.org/10.3389/fninf.2017.00020

  9. Han Y, Wang J, Zhao Z, Min B, Lu J, Li K, He Y, Jia J (2011) Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: a resting-state fMRI study. NeuroImage. https://doi.org/10.1016/j.neuroimage.2010.11.059

  10. Huang XQ, Lui S, Deng W, Chan RCK, Wu QZ, Jiang LJ, Zhang JR, Jia ZY, Li XL, Li F, Chen L, Li T, Gong QY (2010) Localization of cerebral functional deficits in treatment-naive, first-episode schizophrenia using resting-state fMRI. NeuroImage. https://doi.org/10.1016/j.neuroimage.2009.11.072

  11. Wang B, Niu Y, Miao L, Cao R, Yan P, Guo H, Li D, Guo Y, Yan T, Wu J, Xiang J, Zhang H (2017) Decreased complexity in Alzheimer’s disease: resting-state fMRI evidence of brain entropy mapping. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2017.00378

  12. Li Y, Liang P, Jia X, Li K (2016) Abnormal regional homogeneity in Parkinson’s disease: a resting state fMRI study. Clin Radiol. https://doi.org/10.1016/j.crad.2015.10.006

  13. Zhu L, Li Y, Wang Y, Li R, Zhang Z, Lu G, Chen H (2016) Aberrant long-range functional connectivity density in generalized tonic-clonic seizures. Medicine (United States). https://doi.org/10.1097/MD.0000000000003893

  14. Hu X, Jiang Y, Jiang X, Zhang J, Liang M, Li J, Zhang Y, Yao D, Luo C, Wang J (2017) Altered functional connectivity density in subtypes of Parkinson’s disease. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2017.00458

  15. Sanz-Arigita EJ, Schoonheim MM, Damoiseaux JS, Rombouts SARB, Maris E, Barkhof F, Scheltens P, Stam CJ (2010) Loss of ‘Small-World’ networks in Alzheimer’s disease: graph analysis of fMRI resting-state functional connectivity. PLoS One. https://doi.org/10.1371/journal.pone.0013788

  16. Khazaee A, Ebrahimzadeh A, Babajani-Feremi A (2015) Identifying patients with Alzheimer’s disease using resting-state fMRI and graph theory. Clin Neurophysiol. https://doi.org/10.1016/j.clinph.2015.02.060

  17. Jafri MJ, Pearlson GD, Stevens M, Calhoun VD (2008) A method for functional network connectivity among spatially independent resting-state components in schizophrenia. NeuroImage. https://doi.org/10.1016/j.neuroimage.2007.11.001

  18. Du Y, Pearlson GD, Liu J, Sui J, Yu Q, He H, Castro E, Calhoun VD (2015) A group ICA based framework for evaluating resting fMRI markers when disease categories are unclear: application to schizophrenia, bipolar, and schizoaffective disorders. NeuroImage. https://doi.org/10.1016/j.neuroimage.2015.07.054

  19. Zhang D, Liu X, Chen J, Liu B, Wang J (2015) Widespread increase of functional connectivity in Parkinson’s disease with tremor: a resting-state fMRI study. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2015.00006

  20. Olde Dubbelink KTE, Stoffers D, Deijen JB, Twisk JWR, Stam CJ, Hillebrand A, Berendse HW (2013) Resting-state functional connectivity as a marker of disease progression in Parkinson’s disease: a longitudinal MEG study. NeuroImage Clin. https://doi.org/10.1016/j.nicl.2013.04.003

  21. Balchandani P, Naidich TP (2015) Ultra-high-field MR neuroimaging. AJNR Am J Neuroradiol 36(7):1204–1215. https://doi.org/10.3174/ajnr.A4180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jung BA, Weigel M (2013) Spin echo magnetic resonance imaging. J Magn Reson Imaging 37(4):805–817. https://doi.org/10.1002/jmri.24068

    Article  PubMed  Google Scholar 

  23. Huang S, Liu C, Dai G, Kim YR, Rosen BR (2009) Manipulation of tissue contrast using contrast agents for enhanced MR microscopy in ex vivo mouse brain. NeuroImage 46(3):589–599. https://doi.org/10.1016/j.neuroimage.2009.02.027

    Article  PubMed  Google Scholar 

  24. Mulkern RV, Wong ST, Winalski C, Jolesz FA (1990) Contrast manipulation and artifact assessment of 2D and 3D RARE sequences. Magn Reson Imaging 8(5):557–566

    Article  CAS  PubMed  Google Scholar 

  25. Bloch F (1953) The principle of nuclear induction. Science 118(3068):425–430. https://doi.org/10.1126/science.118.3068.425

    Article  CAS  PubMed  Google Scholar 

  26. Hoult DI, Richards RE (2011) The signal-to-noise ratio of the nuclear magnetic resonance experiment. 1976. J Magn Reson 213(2):329–343. https://doi.org/10.1016/j.jmr.2011.09.018

    Article  CAS  PubMed  Google Scholar 

  27. Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26(2):375–385. https://doi.org/10.1002/jmri.20969

    Article  PubMed  Google Scholar 

  28. Sharief AA, Johnson GA (2006) Enhanced T2 contrast for MR histology of the mouse brain. Magn Reson Med 56(4):717–725. https://doi.org/10.1002/mrm.21026

    Article  PubMed  Google Scholar 

  29. Haacke EM (1999) Magnetic resonance imaging: physical principles and sequence design. Wiley, New York

    Google Scholar 

  30. Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, Ugurbil K (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 64(3):803–812. https://doi.org/10.1016/S0006-3495(93)81441-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Caro AC, Hankenson FC, Marx JO (2013) Comparison of thermoregulatory devices used during anesthesia of C57BL/6 mice and correlations between body temperature and physiologic parameters. J Am Assoc Lab Anim Sci 52(5):577–583

    CAS  PubMed  PubMed Central  Google Scholar 

  32. McNab JA, Jbabdi S, Deoni SC, Douaud G, Behrens TE, Miller KL (2009) High resolution diffusion-weighted imaging in fixed human brain using diffusion-weighted steady state free precession. NeuroImage 46(3):775–785. https://doi.org/10.1016/j.neuroimage.2009.01.008

    Article  PubMed  Google Scholar 

  33. Xiao YD, Paudel R, Liu J, Ma C, Zhang ZS, Zhou SK (2016) MRI contrast agents: classification and application (review). Int J Mol Med 38(5):1319–1326. https://doi.org/10.3892/ijmm.2016.2744

    Article  CAS  PubMed  Google Scholar 

  34. Kuo YT, Herlihy AH, So PW, Bhakoo KK, Bell JD (2005) In vivo measurements of T1 relaxation times in mouse brain associated with different modes of systemic administration of manganese chloride. J Magn Reson Imaging 21(4):334–339. https://doi.org/10.1002/jmri.20285

    Article  PubMed  Google Scholar 

  35. DiFrancesco MW, Rasmussen JM, Yuan W, Pratt R, Dunn S, Dardzinski BJ, Holland SK (2008) Comparison of SNR and CNR for in vivo mouse brain imaging at 3 and 7 T using well matched scanner configurations. Med Phys 35(9):3972–3978. https://doi.org/10.1118/1.2968092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim SG, Harel N, Jin T, Kim T, Lee P, Zhao F (2013) Cerebral blood volume MRI with intravascular superparamagnetic iron oxide nanoparticles. NMR Biomed 26(8):949–962. https://doi.org/10.1002/nbm.2885

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yen-Yu I. Shih .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

MacKinnon, M.J., Wang, TW.W., Shih, YY.I. (2023). Mouse Brain MRI: Including In Vivo, Ex Vivo, and fcMRI for the Study of Microcephaly. In: Gershon, T. (eds) Microcephaly. Methods in Molecular Biology, vol 2583. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2752-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2752-5_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2751-8

  • Online ISBN: 978-1-0716-2752-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics