Skip to main content

Targeted Manipulation of Histone Modification in Medaka Embryos

  • Protocol
  • First Online:
Epigenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2577))

Abstract

Recent development of targeted manipulation of histone modification enables us to experimentally and directly test the functional relevance of histone modifications accumulated at specific genomic regions. In particular, dCas9 epigenome editing has been widely used for site-specific manipulation of epigenetic modification. Here, we describe how to apply dCas9 epigenome editing in fish (medaka, Oryzias latipes) embryos and how to analyze induced changes in histone modification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakamura M, Gao Y, Dominguez AA, Qi LS (2021) CRISPR technologies for precise epigenome editing. Nat Cell Biol 23:11–22. https://doi.org/10.1038/s41556-020-00620-7

    Article  CAS  PubMed  Google Scholar 

  2. Heller EA, Cates HM, Peña CJ et al (2014) Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nat Neurosci 17:1720–1727. https://doi.org/10.1038/nn.3871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aleyasin H, Flanigan ME, Golden SA et al (2018) Cell-type-specific role of ΔFosB in nucleus accumbens in modulating intermale aggression. J Neurosci 38:5913–5924. https://doi.org/10.1523/JNEUROSCI.0296-18.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hamilton PJ, Burek DJ, Lombroso SI et al (2018) Cell-type-specific epigenetic editing at the Fosb gene controls susceptibility to social defeat stress. Neuropsychopharmacology 43:272–284. https://doi.org/10.1038/npp.2017.88

    Article  CAS  PubMed  Google Scholar 

  5. Bustos FJ, Ampuero E, Jury N et al (2017) Epigenetic editing of the Dlg4/PSD95 gene improves cognition in aged and Alzheimer’s disease mice. Brain 140:3252–3268. https://doi.org/10.1093/brain/awx272

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mendenhall EM, Williamson KE, Reyon D et al (2013) Locus-specific editing of histone modifications at endogenous enhancers. Nat Biotechnol 31:1133–1136. https://doi.org/10.1038/nbt.2701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Konermann S, Brigham MD, Trevino AE et al (2013) Optical control of mammalian endogenous transcription and epigenetic states. Nature 500:472–476. https://doi.org/10.1038/nature12466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hilton IB, D’Ippolito AM, Vockley CM et al (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33:510–517. https://doi.org/10.1038/nbt.3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fukushima HS, Takeda H, Nakamura R (2019) Targeted in vivo epigenome editing of H3K27me3. Epigenetics Chromatin 12:17. https://doi.org/10.1186/s13072-019-0263-z

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hwang WY, Fu Y, Reyon D et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229. https://doi.org/10.1038/nbt.2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stemmer M, Thumberger T, Del Sol KM et al (2015) CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One 10:e0124633. https://doi.org/10.1371/journal.pone.0124633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595. https://doi.org/10.1093/bioinformatics/btp698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li H, Handsaker B, Wysoker A et al (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. https://doi.org/10.1093/bioinformatics/btq033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang Y, Liu T, Meyer CA et al (2008) Model-based Analysis of ChIP-Seq (MACS). Genome Biol 9:R137. https://doi.org/10.1186/gb-2008-9-9-r137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qi LS, Larson MH, Gilbert LA et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183. https://doi.org/10.1016/j.cell.2013.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barkal AA, Srinivasan S, Hashimoto T et al (2016) Cas9 functionally opens chromatin. PLoS One 11:e0152683. https://doi.org/10.1371/journal.pone.0152683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Polstein LR, Perez-Pinera P, Kocak DD et al (2015) Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators. Genome Res 25:1158–1169. https://doi.org/10.1101/gr.179044.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Varshney GK, Pei W, LaFave MC et al (2015) High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res 25:1030–1042. https://doi.org/10.1101/gr.186379.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hoshijima K, Jurynec MJ, Klatt Shaw D et al (2019) Highly efficient CRISPR-Cas9-based methods for generating deletion mutations and F0 embryos that lack gene function in zebrafish. Dev Cell 51:645–657.e4. https://doi.org/10.1016/j.devcel.2019.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakamura R, Tsukahara T, Qu W et al (2014) Large hypomethylated domains serve as strong repressive machinery for key developmental genes in vertebrates. Development 141:2568–2580. https://doi.org/10.1242/dev.108548

    Article  CAS  PubMed  Google Scholar 

  23. Tie F, Banerjee R, Stratton CA et al (2009) CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing. Development 136:3131–3141. https://doi.org/10.1242/dev.037127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yuan W, Xu M, Huang C et al (2011) H3K36 methylation antagonizes PRC2-mediated H3K27 methylation. J Biol Chem 286:7983–7989. https://doi.org/10.1074/jbc.M110.194027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu X, Scott DA, Kriz AJ et al (2014) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 32:670–676. https://doi.org/10.1038/nbt.2889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Singh R, Kuscu C, Quinlan A et al (2015) Cas9-chromatin binding information enables more accurate CRISPR off-target prediction. Nucleic Acids Res 43:e118–e118. https://doi.org/10.1093/nar/gkv575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maeder ML, Linder SJ, Cascio VM et al (2013) CRISPR RNA–guided activation of endogenous human genes. Nat Methods 10:977–979. https://doi.org/10.1038/nmeth.2598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Perez-Pinera P, Kocak DD, Vockley CM et al (2013) RNA-guided gene activation by CRISPR-Cas9–based transcription factors. Nat Methods 10:973–976. https://doi.org/10.1038/nmeth.2600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin L, Liu Y, Xu F et al (2018) Genome-wide determination of on-target and off-target characteristics for RNA-guided DNA methylation by dCas9 methyltransferases. Gigascience 7. https://doi.org/10.1093/gigascience/giy011

  30. Pflueger C, Tan D, Swain T et al (2018) A modular dCas9-SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of direct fusion dCas9-DNMT3A constructs. Genome Res 28:1193–1206. https://doi.org/10.1101/gr.233049.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS Grant-in-Aid for JSPS Research Fellow Grant Number JP18J21761 to H.S.F., by Japan Agency for Medical Research and Development (AMED) under Grant Number JP18gm1110007h0001 to H.T., by Japan Society for the Promotion of Science (JSPS) grant number JP21K06013, and by Grant-in-Aid for Scientific Research on Innovative Areas grant number JP21H00245 to R.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryohei Nakamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fukushima, H.S., Takeda, H., Nakamura, R. (2023). Targeted Manipulation of Histone Modification in Medaka Embryos. In: Hatada, I., Horii, T. (eds) Epigenomics. Methods in Molecular Biology, vol 2577. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2724-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2724-2_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2723-5

  • Online ISBN: 978-1-0716-2724-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics