Skip to main content

RNA Capture-SELEX on Streptavidin Magnetic Beads

  • Protocol
  • First Online:
Nucleic Acid Aptamers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2570))

Abstract

SELEX has enabled the selection of aptamers, nucleic acids that can bind a defined ligand, in some cases with exceptionally high affinity and specificity. The SELEX protocol has been adapted many times to fit a variety of needs. This protocol describes such an adaptation, namely, RNA-Capture SELEX that we have used to successfully develop small molecule-binding RNA aptamers. Our proposed method specifically selects not only for excellent binding but also for conformational switching. In consequence, we found this SELEX method to be particularly suitable for identifying aptamers for further application in synthetic riboswitch engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ono A, Togashi H (2004) Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angew Chem Int Ed 43:4300–4302. https://doi.org/10.1002/anie.200454172

    Article  CAS  Google Scholar 

  2. Hanson S, Berthelot K, Fink B, McCarthy JEG, Suess B (2003) Tetracycline-aptamer-mediated translational regulation in yeast. Mol Microbiol 49:1627–1637. https://doi.org/10.1046/j.1365-2958.2003.03656.x

    Article  CAS  Google Scholar 

  3. Wrist A, Sun W, Summers RM (2020) The theophylline aptamer: 25 years as an important tool in cellular engineering research. ACS Synth Biol 9:682–697. https://doi.org/10.1021/acssynbio.9b00475

    Article  CAS  Google Scholar 

  4. Min K, Cho M, Han S-Y, Shim Y-B, Ku J, Ban C (2008) A simple and direct electrochemical detection of interferon-γ using its RNA and DNA aptamers. Biosens Bioelectron 23:1819–1824. https://doi.org/10.1016/j.bios.2008.02.021

    Article  CAS  Google Scholar 

  5. Potty ASR, Kourentzi K, Fang H, Jackson GW, Zhang X, Legge GB, Willson RC (2009) Biophysical characterization of DNA aptamer interactions with vascular endothelial growth factor. Biopolymers 91:145–156. https://doi.org/10.1002/bip.21097

    Article  CAS  Google Scholar 

  6. Long SB, Long MB, White RR, Sullenger BA (2008) Crystal structure of an RNA aptamer bound to thrombin. RNA 14:2504–2512. https://doi.org/10.1261/rna.1239308

    Article  CAS  Google Scholar 

  7. Hamula CLA, Zhang H, Guan LL, Li X-F, Le XC (2008) Selection of aptamers against live bacterial cells. Anal Chem 80:7812–7819. https://doi.org/10.1021/ac801272s

    Article  CAS  Google Scholar 

  8. Ye X, Shi H, He X, Wang K, He D, Yan L, Xu F, Lei Y, Tang J, Yu Y (2015) Iodide-responsive Cu–Au nanoparticle-based colorimetric platform for ultrasensitive detection of target cancer cells. Anal Chem 87:7141–7147. https://doi.org/10.1021/acs.analchem.5b00943

    Article  CAS  Google Scholar 

  9. Wang K, Fan D, Liu Y, Wang E (2015) Highly sensitive and specific colorimetric detection of cancer cells via dual-aptamer target binding strategy. Biosens Bioelectron 73:1–6. https://doi.org/10.1016/j.bios.2015.05.044

    Article  CAS  Google Scholar 

  10. Cao X, Li S, Chen L, Ding H, Xu H, Huang Y, Li J, Liu N, Cao W, Zhu Y, Shen B, Shao N (2009) Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Res 37:4621–4628. https://doi.org/10.1093/nar/gkp489

    Article  CAS  Google Scholar 

  11. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510. https://doi.org/10.1126/science.2200121

    Article  CAS  Google Scholar 

  12. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822. https://doi.org/10.1038/346818a0

    Article  CAS  Google Scholar 

  13. Zhang Y, Lai BS, Juhas M (2019) Recent advances in aptamer discovery and applications. Molecules 24:941. https://doi.org/10.3390/molecules24050941

    Article  CAS  Google Scholar 

  14. Nutiu R, Li Y (2005) In vitro selection of structure-switching signaling aptamers. Angew Chem Int Ed 44:1061–1065. https://doi.org/10.1002/anie.200461848

    Article  CAS  Google Scholar 

  15. Rajendran M, Ellington AD (2003) In vitro selection of molecular beacons. Nucleic Acids Res 31:5700–5713. https://doi.org/10.1093/nar/gkg764

    Article  CAS  Google Scholar 

  16. Stoltenburg R, Nikolaus N, Strehlitz B (2012) Capture-SELEX: selection of DNA aptamers for aminoglycoside antibiotics. J Anal Methods Chem 2012:415697. https://doi.org/10.1155/2012/415697

    Article  CAS  Google Scholar 

  17. Boussebayle A, Torka D, Ollivaud S, Braun J, Bofill-Bosch C, Dombrowski M, Groher F, Hamacher K, Suess B (2019) Next-level riboswitch development—implementation of Capture-SELEX facilitates identification of a new synthetic riboswitch. Nucleic Acids Res 47:4883–4895. https://doi.org/10.1093/nar/gkz216

    Article  CAS  Google Scholar 

  18. Boussebayle A, Groher F, Suess B (2019) RNA-based Capture-SELEX for the selection of small molecule-binding aptamers. Methods 161:10–15. https://doi.org/10.1016/j.ymeth.2019.04.004

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatrix Suess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kraus, L., Suess, B. (2023). RNA Capture-SELEX on Streptavidin Magnetic Beads. In: Mayer, G., Menger, M.M. (eds) Nucleic Acid Aptamers. Methods in Molecular Biology, vol 2570. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2695-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2695-5_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2694-8

  • Online ISBN: 978-1-0716-2695-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics