Skip to main content

Lectin Histochemistry: Historical Perspectives, State of the Art, and Future Directions

  • Protocol
  • First Online:
Histochemistry of Single Molecules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2566))

Abstract

Lectins, discovered more than 100 years ago and defined by their ability to selectively recognize specific carbohydrate structures, are ubiquitous in living organisms. Their precise functions are as yet under-explored and incompletely understood but they are clearly involved, through recognition of their binding partners, in a myriad of biological mechanisms involved in cell identity, adhesion, signaling, and growth regulation in health and disease. Understanding the complex “sugar code” represented by the “glycome” is a major challenge and at the forefront of current biological research. Lectins have been widely employed in histochemical studies to map glycosylation in cells and tissues. Here, a brief history of the discovery of lectins and early developments in their use is presented along with a selection of some of the most interesting and significant discoveries to emerge from the use of lectin histochemistry. Further, an evaluation of the next generation of lectin-based technologies is presented, including the potential for designing recombinant lectins with more precisely defined binding characteristics, linking lectin-based studies with other technologies to answer fundamental questions in glycobiology and approaches to exploring the interactions of lectins with their binding partners in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boyd WC, Shapleigh E (1954) Separation of individuals of any blood group into secretors and non-secretors by use of a plant agglutinin (lectin). Blood 9:1195–1198

    Article  Google Scholar 

  2. Goldstein IJ, Hughes RC, Monsigny M, Osawa T, Sharon N (1980) What should be called a lectin? Nature 285:66

    Article  Google Scholar 

  3. Kocourek J (1986) Historical background. In: Liener IR, Sharon N, Goldstein IJ (eds) The lectins: properties, functions and applications in biology and medicine. Academic Press, pp 3–33

    Google Scholar 

  4. Sharon N, Lis H (2004) History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14:53R–63R

    Article  CAS  PubMed  Google Scholar 

  5. Watkins WM, Morgan WT (1952) Neutralization of the anti-H agglutinin in eel serum by simple sugars. Nature 169:825–826

    Article  CAS  PubMed  Google Scholar 

  6. Boyd WC, Reguera RM (1949) Haemagglutinating substances for human cells in various plants. J Immunol 62:333–339

    CAS  PubMed  Google Scholar 

  7. Morgan WTJ, Watkins WM (1959) The inhibition of the haemagglutinins in plant seeds by human blood group substances and simple sugars. Br J Exp Pathol 34:94–103

    Google Scholar 

  8. Hudgin RL, Pricer WE Jr, Ashwell G, Stockert RJ, Morell AG (1974) The isolation and properties of a rabbit liver binding protein specific for asialoglycoproteins. J Biol Chem 249:5536–5543

    Article  CAS  PubMed  Google Scholar 

  9. Teichberg VI, Silman I, Beitsch DD, Resheff G (1975) A a-D-galactoside binding protein in the electric organ tissue of Electrophorus electricus. Proc Natl Acad Sci U S A 72:1383–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ley K (2003) The role of selectins in inflammation and disease. Trends Mol Med 9:263–268

    Article  CAS  PubMed  Google Scholar 

  11. Dommett RM, Klein N, Turner MW (2006) Mannose-binding lectin in innate immunity: past, present and future. Tissue Antigens 68:193–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mayadas TN, Johnson RC, Rayburn H, Hynes RO, Wagner DD (1993) Leukocyte rolling and extravasation are severely compromised in P selectin–deficient mice. Cell 74:541–554

    Article  CAS  PubMed  Google Scholar 

  13. Labow MA, Norton CR, Rumberger JM, Lombard-Gillooly KM, Shuster DJ, Hubbard J et al (1994) Characterization of E-selectin-deficient mice: demonstration of overlapping function of the endothelial selectins. Immunity 1:709–720

    Article  CAS  PubMed  Google Scholar 

  14. Frenette PS, Mayadas TN, Rayburn H, Hynes RO, Wagner DD (1996) Susceptibility to infection and altered hematopoiesis in mice deficient in both P- and E-selectins. Cell 84:563–574

    Article  CAS  PubMed  Google Scholar 

  15. Stubke K, Wicklein D, Herich L, Schumacher U, Nehmann N (2012) Selectin-deficiency reduces the number of spontaneous metastases in a xenograft model of human breast cancer. Cancer Lett 321:89–99

    Article  PubMed  Google Scholar 

  16. Coons AH, Creech HJ, Jones RN (1941) Immunological properties of an antibody containing a fluorescent group. Proc Soc Exp Biol Med 47:200–202

    Article  CAS  Google Scholar 

  17. Coons AH, Leduc EH, Connolly JM (1955) Studies on antibody production. I: a method for the histochemical demonstration of specific antibody and its application to a study of the hyperimmune rabbit. J Exp Med 102:49–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Coons AH, Kaplan MH (1950) Localisation of antigen in tissue cells. J Exp Med 91:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Polak JM, Van Noorden S (1997) Chapter 1: Introduction. In: Introduction to immunocytochemistry, Royal Microscopical Society Handbooks number 37, 2nd edn. Bios Scientific Publishers Ltd, Oxford, UK, pp 1–4

    Google Scholar 

  20. Roth J (2011) Lectins for histochemical demonstration of glycans. Histochem Cell Biol 136:117–130

    Article  CAS  PubMed  Google Scholar 

  21. Gabius H-J, Kayser K (2014) Introduction to glycopathology: the concept, the tools and the perspectives. Diagn Pathol 9:4

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gabius H-J, Schroter C, Gabius S, Brinck U, Tietze LF (1990) Binding of T-antigen bearing neoglycoprotein and peanut agglutinin to cultured tumour cells and breast carcinomas. J Histochem Cytochem 38:1625–1631

    Article  CAS  PubMed  Google Scholar 

  23. Xu X-C, Brinck U, Schauer A, Gabius H-J (2000) Differential binding activities of lectins and neoglycoproteins in human testicular tumours. Urol Res 28:62–68

    Article  CAS  PubMed  Google Scholar 

  24. Delorge S, Saussez S, Pelc P, Devroede B, Marchant H, Burchertet M et al (2000) Correlation of galectin 3/galectin-3 binding sites with low differentiation status in head and neck squamous cell carcinomas. Otolaryngol Head Neck Surg 122:834–841

    CAS  PubMed  Google Scholar 

  25. Habermann FA, Andre S, Kaltner H, Kübler D, Sinowatz F, Gabius H-J (2011) Galectins as tools for glycan mapping in histology: comparison of their binding profiles to bovine zona pellucida by confocal scanning electron microscopy. Histochem Cell Biol 135:539–552

    Article  CAS  PubMed  Google Scholar 

  26. Khan S, Brooks SA, Leathem AJC (1994) GalNAc-type glycoproteins in breast cancer - a 26 lectin study. J Pathol 172(supplement):134A

    Google Scholar 

  27. Wu AM, Sugii S (1991) Coding and classification of D-galactose, N-acetyl-D-galactosamine, and β-D-Galp-[1-3(4)]-β-D-GlcpNAc, specificities of applied lectins. Carbohydr Res 213:127–143

    Article  CAS  Google Scholar 

  28. Dwek MV, Ross HA, Streets AJ, Brooks SA, Adam E, Titcomb A et al (2001) Helix pomatia agglutinin lectin-binding oligosaccharides of aggressive breast cancer. Int J Cancer 95:79–85

    CAS  PubMed  Google Scholar 

  29. Sanchez JF, Lescar J, Chazalet V, Audfray A, Gagnon J, Alvarez R et al (2006) Biochemical and structural analysis of Helix pomatia agglutinin (HPA): a hexameric lectin with a novel fold. J Biol Chem 281:20171–20180

    Article  CAS  PubMed  Google Scholar 

  30. Lescar J, Sanchez J-F, Audfraya A, Coll J-L, Breton C, Mitchell EP et al (2007) Structural basis for recognition of breast and colon cancer epitopes Tn antigen and Forssman disaccharide by Helix pomatia lectin. Glycobiology 17:1077–1083

    Article  CAS  PubMed  Google Scholar 

  31. Miller R, Collowan J, Fish W (1982) Purification and molecular properties of a sialic acid-specific lectin from the slug Limax flavus. J Biol Chem 257:7574–7580

    Article  CAS  PubMed  Google Scholar 

  32. Mo HQ, Winter HC, Goldstein IJ (2000) Purification and characterisation of a Neu5Ac alpha2-6Gal beta1-4Glc/GalNAc-specific lectin from the fruiting body of the polypore mushroom Polporus squamosus. J Biol Chem 275:10623–10629

    Article  CAS  PubMed  Google Scholar 

  33. Wang WC, Cummings RD (1988) The immobilised leukoagglutinin from the seeds of Maakia amurensis binds with high affinity to complex type asn-linked oligosaccharides containing terminal sialic acid α2,3 linked to penultimate galactose residues. J Biol Chem 263:4576–4585

    Article  CAS  PubMed  Google Scholar 

  34. Taatjes DJ, Roth J, Peumans W, Goldstein IJ (1988) Elderberry bark lectin-gold techniques for the detection of NeuAc (alpha2,6) Gal/GalNAc sequences: applications and limitations. Histochem J 20:478–490

    Article  CAS  PubMed  Google Scholar 

  35. Walski T, De Schutter K, Cappelle K, Van Damme EJM, Smagghe G (2017) Distribution of glycan motifs at the surface of midgut cells in the cotton leafworm (Spodoptera littoralis) demonstrated by lectin binding. Front Physiol 8:Article 1020

    Article  PubMed  Google Scholar 

  36. Harrison CH, Buckland GR, Brooks SE, Johnston DA, Chatelet DS, Liu AKL et al (2018) A novel method to visualise the three-dimensional organisation of the human cerebral cortical vasculature. J Anat 232:1025–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brooks SA, Leathem AJC, Schumacher U (1997) Lectin histochemistry, a concise practical handbook, Royal Microscopical Society Handbook series number 36. Bios Scientific Publishers Ltd, Oxford, UK

    Book  Google Scholar 

  38. Aub JC, Tieslau C, Lankester A (1963) Reactions of normal and tumour cell surfaces to enzymes. I wheat-germ lipase and associated mucopolysaccharides. Proc Natl Acad Sci U S A 50:613–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Inbar M, Sachs L (1969) Interaction of the carbohydrate-binding protein concanavalin A with normal and transformed cells. Proc Natl Acad Sci U S A 63:1418–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sela BA, Lis H, Sharon N, Sachs L (1970) Different locations of carbohydrate-containing sites at the surface membrane of normal and transformed mammalian cells. J Membr Biol 3:267–279

    Article  CAS  PubMed  Google Scholar 

  41. Sharon N (1977) Lectins. Sci Am 236:108–119

    Article  CAS  PubMed  Google Scholar 

  42. Brooks SA, Carter TM, Royle L, Harvey DJ, Fry SA, Kinch C et al (2008) Altered glycosylation of proteins in cancer: what is the potential for new anti-tumour strategies? Anti Cancer Agents Med Chem 8:2–21

    Article  CAS  Google Scholar 

  43. Ajit Varki A, Richard D, Cummings R, Esko JD, Freeze HH, Stanley P, Bertozzi CR et al (eds) (1999) Essentials of glycobiology. Cold Spring Harbour Laboratory Press, New York

    Google Scholar 

  44. Brooks SA, Dwek MV, Schumacher U (2002) Functional and molecular glycobiology. Bios Scientific Publishers Ltd, Oxford

    Google Scholar 

  45. Brooks SA, Leathem AJC (1995) Expression of GalNAc glycoproteins by breast cancers. Br J Cancer 71:1033–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brooks SA (2000) The involvement of Helix pomatia lectin (HPA) binding N-acetylgalactosamine glycans in cancer progression. Histol Histopathol 15:143–158

    CAS  PubMed  Google Scholar 

  47. Springer GF, Desai PR, Tegtmeyer H, Carlstedt SC, Scanlon EF (1994) T/Tn antigen vaccine is effective and safe in preventing recurrence of advanced human breast carcinoma. Cancer Biother 9:5–15

    Article  Google Scholar 

  48. Lo-Man R, Vichier-Guerre S, Bay S, Dériaud E, Cantacuzène D, Leclerc C (2001) Anti-tumor immunity provided by a synthetic multiple antigenic glycopeptide displaying tri-Tn glycotope. J Immunol 166:2849–2854

    Article  CAS  PubMed  Google Scholar 

  49. Hanisch FG, Baldus SE (1997) The Thompsen-Friedenreich (TF) antigen: a critical review on the structural, biosynthetic and histochemical aspects of a pancarcinoma-associated antigen. Histol Histopathol 12:263–281

    CAS  PubMed  Google Scholar 

  50. Fernandes B, Sagman U, Auger M, Demetrio M, Dennis JW (1991) Beta 1-6 branched oligosaccharides as a marker of tumour progression in human breast and colon neoplasia. Cancer Res 51:718–723

    CAS  PubMed  Google Scholar 

  51. Dennis JW, Laferte S, Waghorne C, Breitman ML, Kerbel RS (1987) Beta 1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 236:582–585

    Article  CAS  PubMed  Google Scholar 

  52. Yousefi S, Higgins E, Daoling Z, Pollex-Krüger A, Hindsgaul O, Dennis JW (1991) Increased UDP-GlcNAc:Gal beta 1-3 GalNAc-R (GlcNAc to GalNAc) beta 1-6 N-acetylglucosaminyltransferase activity in metastatic murine tumor cell lines. Control of polylactosamine synthesis. J Biol Chem 266:1772–1782

    Article  CAS  PubMed  Google Scholar 

  53. Goss PE, Reid CL, Bailey D, Dennis JW (1997) Phase I clinical trial of the oligosaccharide processing inhibitor swainsonine in patients with advanced malignancies. Clin Cancer Res 3:1077–1086

    CAS  PubMed  Google Scholar 

  54. Martins AM, Ramos CC, Freitas D, Reis C (2021) Glycosylation of cancer extracellular vesicles: capture, strategies, functional roles and potential clinical applications. Cell 10:109

    Article  CAS  Google Scholar 

  55. Yamamoto M, Harada Y, Suzuki T, Fukushige T, Yamakuchi M, Kanekura T et al (2019) Application of high-mannose-type glycan-specific lectin from Oscillatoria agardhii for affinity isolation of tumor-derived extracellular vesicles. Anal Biochem 580:21–29

    Article  CAS  PubMed  Google Scholar 

  56. Laine RA (1997) The information-storing potential of the sugar code. In: Gabius H-J, Gabius S (eds) Glycosciences: status and perspectives. Chapman and Hall, London-Weinheim, pp 1–4

    Google Scholar 

  57. Hu D, Tateno H, Hirabayashi J (2015) Lectin engineering, a molecular evolutionary approach to expanding lectin utilities. Molecules 20:7637–7656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schumacher U, Adam E, Brooks SA, Leathem AJ (1995) Lectin binding properties of human breast cancer cell lines and human milk with particular reference to Helix pomatia agglutinin. J Histochem Cytochem 43:275–281

    Article  CAS  PubMed  Google Scholar 

  59. Dwek MV, Lacey HA, Streets AJ, Brooks SA, Adam E, Titcomb A et al (2001) Helix pomatia agglutinin lectin-binding oligosaccharides of aggressive breast cancer. Int J Cancer 95:79–85

    CAS  PubMed  Google Scholar 

  60. Peiris D, Ossondo M, Fry S, Loizidou M, Smith-Ravin J, Dwek MV (2015) Identification of O-linked glycoproteins binding to the lectin Helix pomatia agglutinin as markers of metastatic colorectal cancer. PLoS One 10(10):e0138345

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bapu D, Runions J, Kadhim M, Brooks SA (2016) N-acetylgalactosamine glycans function in cancer cell adhesion to endothelial cells: a role for truncated O-glycans in metastatic mechanisms. Cancer Lett 375:367–374

    Article  CAS  PubMed  Google Scholar 

  62. Markiv A, Peiris D, Curley GP, Odell M, Dwek MV (2001) Identification, cloning, and characterization of two N-acetylgalactosamine-binding lectins from the albumen gland of Helix pomatia. J Biol Chem 286:20260–20266

    Article  Google Scholar 

  63. Maenuma K, Yim M, Komatsu K, Hoshino M, Takahashi Y, Bovin N et al (2008) Use of a library of mutated Maackia amurensis hemagglutinin for profiling the cell lineage and differentiation. Proteomics 8:3274–3283

    Article  CAS  PubMed  Google Scholar 

  64. Yabe R, Suzuki R, Kuno A, Fujimoto Z, Jigami Y, Hirabayashi J (2007) Tailoring a novel sialic acid-binding lectin from a ricin-B chain-like galactose-binding protein by natural evolution-mimicry. J Biochem 141:389–399

    Article  CAS  PubMed  Google Scholar 

  65. Yabe R, Itakura Y, Nakamura-Tsuruta S, Iwaki J, Kuno A, Hirabayashi J (2009) Engineering a versatile tandem repeat-type a2-6sialic acid-binding lectin. Biochem Biophys Res Commun 384:204–209

    Article  CAS  PubMed  Google Scholar 

  66. Adamczyk B, Tharmalingam T, Rudd PM (2012) Glycans as cancer biomarkers. Biochim Biophys Acta 1820:1347–1353

    Article  CAS  PubMed  Google Scholar 

  67. Rudd P, Karlsson NG, Khoo K-H, Packer NH (2017) Chapter 15: Glycomics and glycoproteomics. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology [Internet], 3rd edn. Cold Spring Harbor Laboratory Press; 2015–2017. Available from: https://www.ncbi.nlm.nih.gov/books/NBK453015/. https://doi.org/10.1101/glycobiology.3e.051

  68. Johnson QR, Lindsay RJ, Petridis L, Shen T (2015) Investigation of carbohydrate recognition via computer simulation. Molecules 20:7700–7718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Park S, Lee MR, Pyo S, Shin I (2004) Carbohydrate chips for studying high-throughput carbohydrate-protein interactions. J Am Chem Soc 126:4812–4819

    Article  CAS  PubMed  Google Scholar 

  70. Fukui S, Feizi T, Galustian C, Lawson AL, Chai W (2002) Oligosaccharide microarrays for high throughput detection and specificity assignments of carbohydrate-protein interactions. Nat Biotechnol 20:1011–1107

    Article  CAS  PubMed  Google Scholar 

  71. Chen S, LaRoche T, Hamelinck D, Bergsma D, Brenner D, Simeone D et al (2007) Multiplexed analysis of glycan variation on native proteins captured by antibody microarrays. Nat Methods 4:437–444

    Article  CAS  PubMed  Google Scholar 

  72. Kuno A, Uchiyama N, Koseki-Kuno S, Youji Y, Takashima S, Yamada M et al (2005) Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat Methods 2:851–856

    Article  CAS  PubMed  Google Scholar 

  73. Tateno H, Uchiyama N, Kuno A, Togayachi A, Sato T, Narimatsu H et al (2007) A novel strategy for mammalian cell surface glycome profiling using lectin microarray. Glycobiology 17:1138–1146

    Article  CAS  PubMed  Google Scholar 

  74. Pilobello K, Slawek DE, Mahal LK (2007) A ratiometric lectin microarray approach to analysis of the dynamic mammalian glycome. Proc Natl Acad Sci U S A 104:11534–11539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hsu K-L, Pilobello KT, Mahal LK (2007) Analysing the dynamic bacterial glycome with a lectin microarray approach. Nat Chem Biol 2:153–157

    Article  Google Scholar 

  76. Meany DL, Hackler L Jr, Zhang H, Chan DW (2011) Tyramide signal amplification for antibody-overlay microarray: a strategy to improve the sensitivity of targeted glycan profiling. J Proteome Res 10:1425–1431

    Article  CAS  PubMed  Google Scholar 

  77. Propheter DC, Hsu K-L, Mahal LK (2010) Fabrication of an oriented lectin microarray. Chembiochem 11:1203–1207

    Article  CAS  PubMed  Google Scholar 

  78. Wang H, Li H, Zhang W, Wei L, Yu H, Yang P et al (2014) Multiplex profiling of glycoproteins using a novel bead-based lectin array. Proteomics 14:78–86

    Article  CAS  PubMed  Google Scholar 

  79. Zhang X, Yadavalli VK (2009) Functionalized self-assembled monolayers for measuring single molecule lectin carbohydrate interactions. Anal Chim Acta 649:1–7

    Article  CAS  PubMed  Google Scholar 

  80. Yan C, Yersin A, Afrin R, Sekiguchi H, Ikai A (2009) Single molecular dynamic interactions between glycophorin A and lectin as probed by atomic force microscopy. Biophys Chem 144:72–77

    Article  CAS  PubMed  Google Scholar 

  81. Gour N, Verma S (2008) Synthesis and AFM studies of lectin-carbohydrate self-assemblies. Tetrahedron 64:7331–7337

    Article  CAS  Google Scholar 

  82. Yu H, Shu J, Li Z (2020) Lectin microarrays for glycoproteomics: an overview of their use and potential. Expert Rev Proteomics 17:27–39

    Article  CAS  PubMed  Google Scholar 

  83. Dang K, Zhang W, Jiang S, Lin X, Qian A (2020) Application of lectin microarrays for biomarker discovery. ChemistryOpen 9:285–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hsu KL, Gildersleeve JC, Mahal LK (2008) A simple strategy for the creation of a recombinant lectin microarray. Mol BioSyst 4:654–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li Y, Wen T, Zhu M, Li L, Wei J, Wu X et al (2013) Glycoproteomic analysis of tissues from patients with colon cancer using lectin microarrays and nanoLC-MS/MS. Mol BioSyst 9:1877–1887

    Article  CAS  PubMed  Google Scholar 

  86. Duverger E, Frison N, Roche A-C, Monsigny M (2003) Carbohydrate-lectin interactions assessed by surface plasmon resonance. Biochimie 85:167–179

    Article  CAS  PubMed  Google Scholar 

  87. Jiang K, Shang S, Li W, Guo K, Qin X, Zhang S et al (2015) Multiple lectin assays for detecting glycol-alteration of serum GP73 in liver diseases. Glycoconj J 32:657–664

    Article  PubMed  Google Scholar 

  88. Huang WL, Li YG, Ly YC, Guan X-H, Ji H-F, Chi B-R (2014) Use of lectin microarray to differentiate gastric cancer from gastric ulcer. World J Gastroenterol 20:5474–5482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nakajima K, Inomata M, Iha H, Hiratsuka T, Etoh T, Shiraishi N et al (2015) Establishment of new predictive markers for distant recurrence of colorectal cancer using lectin microarray analysis. Cancer Med 4:293–302

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Ann Brooks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brooks, S.A. (2023). Lectin Histochemistry: Historical Perspectives, State of the Art, and Future Directions. In: Pellicciari, C., Biggiogera, M., Malatesta, M. (eds) Histochemistry of Single Molecules. Methods in Molecular Biology, vol 2566. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2675-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2675-7_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2674-0

  • Online ISBN: 978-1-0716-2675-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics