Skip to main content

Retinoic Acid–Induced Limb Duplications

  • Protocol
  • First Online:
Salamanders

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2562))

Abstract

Retinoic acid (RA) and the family of molecules based on vitamin A known as retinoids have remarkable effects on limb regeneration in salamanders and newts and cause whole limb duplications in a concentration-dependent manner. They respecify all three axes of the limb—the proximodistal, the anteroposterior, and the dorsoventral axis. As a result, complete limbs can be induced to regenerate from distal amputation planes producing two limbs in tandem. Here, we describe the basic methods for undertaking these experiments as well as the use of new synthetic retinoids which have retinoic acid receptor-selective actions. These will be valuable tools in future studies on the molecular basis of limb duplications and thus our understanding of the nature of positional information in the regenerating salamander limb.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Niazi IA, Saxena S (1978) Abnormal hindlimb regeneration in tadpoles of the toad, Bufo andersonii, exposed to excess vitamin A. Folia Biol (Krakow) 26:3–8

    CAS  Google Scholar 

  2. Maden M (1982) Vitamin A and pattern formation in the regenerating limb. Nature 295:672–675

    Article  CAS  Google Scholar 

  3. Maden M (1983a) The effect of vitamin A on the regenerating axolotl limb. J Embryol Exp Morph 77:273–295

    CAS  PubMed  Google Scholar 

  4. Thoms SD, Stocum DL (1984) Retinoic acid-induced pattern duplication in regenerating urodele limbs. Dev Biol 103:319–328

    Article  CAS  Google Scholar 

  5. Niazi IA, Pescitelli MJ, Stocum DL (1985) Stage dependent effects of retinoic acid on regenerating limbs. Wilhelm Roux Arch Dev Biol 194:355–363

    Article  CAS  Google Scholar 

  6. Lheureux E, Thoms SD, Carey F (1986) The effects of two retinoids on limb regeneration in Pleurodeles waltl and Triturus vulgaris. J Embryol Exp Morph 92:165–182

    CAS  PubMed  Google Scholar 

  7. Ju B-G, Kim W-S (1994) Pattern duplication by retinoic acid treatment in the regenerating limbs of Korean salamander larvae, Hynobius leechii, correlates well with the extent of dedifferentiation. Dev Dynam 199:253–267

    Article  CAS  Google Scholar 

  8. Maden M (1983b) The effect of vitamin a on limb regeneration in Rana temporaria. Dev Biol 98:409–416

    Article  CAS  Google Scholar 

  9. Scadding SR, Maden M (1986a) Comparison of the effects of vitamin a on limb development and regeneration in Xenopus laevis tadpoles. J Embryol Exp Morph 191:35–53

    Google Scholar 

  10. Stocum DL, Thoms SD (1984) Retinoic acid-induced pattern completion in double anterior limbs of urodeles. J Exp Zool 232:207–215

    Article  CAS  Google Scholar 

  11. Ludolph DC, Cameron JA, Stocum DL (1990) The effect of retinoic acid on positional memory in the dorsoventral axis of regenerating axolotl limbs. Dev Biol 140:41–52

    Article  CAS  Google Scholar 

  12. Kim W-S, Stocum DL (1990) Retinoic acid modifies positional memory in the anteroposterior axis of regenerating axolotl limbs. Dev Biol 114:170–179

    Article  Google Scholar 

  13. Wigmore P (1990) Serially duplicated regenerates from the anterior half of the axolotl limb after retinoic acid treatment. Rouxs Arch Dev Biol 198:252–256

    Article  Google Scholar 

  14. Mohanty-Heijmadi P, Dutta SK, Mahapatra P (1992) Limbs generated at site of tail amputation in marbled balloon frog after vitamin a treatment. Nature 355:352–353

    Article  Google Scholar 

  15. Maden M (1993) The homeotic transformation of tails into limbs in Rana temporaria by retinoids. Dev Biol 159:379–391

    Article  CAS  Google Scholar 

  16. Vandersea MW, Fleming P, McCarthy RA, Smith DG (1998) Fin duplications and deletions induced by disruptions of retinoic acid signaling. Dev Gene Evol 208:61–68

    Article  CAS  Google Scholar 

  17. Rutledge JC, Shourbaji AG, Hughes LA, Polifka JE, Cruz YP, Bishop JB, Generoso WM (1994) Limb and lower-body duplications induced by retinoic acid in mice. PNAS USA 91:5436–5440

    Article  CAS  Google Scholar 

  18. Niederreither K, Ward SJ, Dolle P, Chambon P (1996) Morphological and molecular characterization of retinoic acid-induced limb duplications in mice. Dev Biol 176:185–198

    Article  CAS  Google Scholar 

  19. Liao X, Collins MD (2008) All-trans retinoic acid-induced ectopic limb and caudal structures: murine strain sensitivities and pathogenesis. Dev Dynam 237:1553–1564

    Article  CAS  Google Scholar 

  20. Tickle C, Alberts B, Wolpert L, Lee J (1982) Local application of retinoic acid to the limb bond mimics the action of the polarizing region. Nature 296:564–566

    Article  CAS  Google Scholar 

  21. Scadding SR, Maden M (1986b) Comparison of the effects of vitamin a on limb development and regeneration in the axolotl, Ambystoma mexicanum. J Embryol Exp Morph 91:19–34

    CAS  PubMed  Google Scholar 

  22. Satre MA, Kochhar DM (1989) Elevations in the endogenous levels of the putative morphogen retinoic acid in embryonic mouse limb-buds associated with limb dysmorphogenesis. Dev Biol 133:529–536

    Article  CAS  Google Scholar 

  23. Chambon P (1995) The molecular and genetic dissection of the retinoid signaling pathway. In: Recent progress in hormone research. Academic Press, London, pp 317–332

    Google Scholar 

  24. Ragsdale CW, Gates PB, Hill DS, Brockes JP (1993) Delta retinoic acid receptor isoform is distinguished by its N-terminal sequence and abundance in the limb regeneration blastema. Mech Dev 40:99–112

    Article  CAS  Google Scholar 

  25. Maden M, Chambers D, Monaghan J (2018) Chapter 7: Retinoic acid and the genetics of positional information. In: Regenerative engineering and developmental biology. CRC Press, Boca Raton, pp 163–180

    Google Scholar 

  26. Koussoulakos S, Sharma KK, Anton HJ (1988) Vitamin a induced bilateral asymmetries in Triturus forelimb regenerates. Biol Struct Morph 1:43–48

    CAS  Google Scholar 

  27. Maden M, Keeble S, Cox RA (1985) The characteristics of local application of retinoic acid to the regenerating axolotl limb. Rouxs Arch Dev Biol 194:228–235

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research concerning the activity of RAR agonists was supported by the National Science Foundation (IOS 1558017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm Maden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Maden, M., Polvadore, T. (2023). Retinoic Acid–Induced Limb Duplications. In: Seifert, A.W., Currie, J.D. (eds) Salamanders. Methods in Molecular Biology, vol 2562. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2659-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2659-7_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2658-0

  • Online ISBN: 978-1-0716-2659-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics