Skip to main content

Endosomal Transport to Lysosomes and the Trans-Golgi Network in Neurons and Other Cells: Visualizing Maturational Flux

  • Protocol
  • First Online:
Golgi

Abstract

High-level microscopy enables the comprehensive study of dynamic intracellular processes. Here we describe a toolkit of combinatorial approaches for fixed cell imaging and live cell imaging to investigate the interactions along the trans-Golgi network (TGN)–endosome–lysosome transport axis, which underlie the maturation of endosomal compartments and degradative flux. For fixed cell approaches, we specifically highlight how choices of permeabilization conditions, antibody selection, and antibody multiplexing affect interpretation of results. For live cell approaches, we emphasize the use of sensors that read out pH and degradative capacity in combination with endosomal identity for elucidating dynamic compartment changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barford K, Deppmann C, Winckler B (2017) The neurotrophin receptor signaling endosome: where trafficking meets signaling. Dev Neurobiol 77:405–418. https://doi.org/10.1002/dneu.22427

    Article  CAS  Google Scholar 

  2. Yap CC, Winckler B (2012) Harnessing the power of the endosome to regulate neural development. Neuron 74:440–451. https://doi.org/10.1016/j.neuron.2012.04.015

    Article  CAS  Google Scholar 

  3. Winckler B, Faundez V, Maday S et al (2018) The endolysosomal system and proteostasis: from development to degeneration. J Neurosci 38:9364–9374. https://doi.org/10.1523/JNEUROSCI.1665-18.2018

    Article  CAS  Google Scholar 

  4. Arrazola Sastre A, Luque Montoro M, Lacerda HM et al (2021) Small gtpases of the rab and arf families: key regulators of intracellular trafficking in neurodegeneration. Int J Mol Sci. https://doi.org/10.3390/ijms22094425

  5. Malik BR, Maddison DC, Smith GA, Peters OM (2019) Autophagic and endo-lysosomal dysfunction in neurodegenerative disease. Mol Brain 12:100. https://doi.org/10.1186/s13041-019-0504-x

    Article  Google Scholar 

  6. Perdigão C, Barata MA, Araújo MN et al (2020) Intracellular trafficking mechanisms of synaptic dysfunction in alzheimer’s disease. Front Cell Neurosci 14:72. https://doi.org/10.3389/fncel.2020.00072

    Article  CAS  Google Scholar 

  7. Lie PPY, Nixon RA (2019) Lysosome trafficking and signaling in health and neurodegenerative diseases. Neurobiol Dis 122:94–105. https://doi.org/10.1016/j.nbd.2018.05.015

    Article  CAS  Google Scholar 

  8. Nagano M, Toshima JY, Elisabeth Siekhaus D, Toshima J (2019) Rab5-mediated endosome formation is regulated at the trans-Golgi network. Commun Biol 2:419. https://doi.org/10.1038/s42003-019-0670-5

    Article  CAS  Google Scholar 

  9. Huotari J, Helenius A (2011) Endosome maturation. EMBO J 30:3481–3500. https://doi.org/10.1038/emboj.2011.286

    Article  CAS  Google Scholar 

  10. Grant BD, Donaldson JG (2009) Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol 10:597–608. https://doi.org/10.1038/nrm2755

    Article  CAS  Google Scholar 

  11. Cui Y, Carosi JM, Yang Z et al (2019) Retromer has a selective function in cargo sorting via endosome transport carriers. J Cell Biol 218:615–631. https://doi.org/10.1083/jcb.201806153

    Article  CAS  Google Scholar 

  12. Simonetti B, Danson CM, Heesom KJ, Cullen PJ (2017) Sequence-dependent cargo recognition by SNX-BARs mediates retromer-independent transport of CI-MPR. J Cell Biol 216:3695–3712. https://doi.org/10.1083/jcb.201703015

    Article  CAS  Google Scholar 

  13. Kvainickas A, Jimenez-Orgaz A, Nägele H et al (2017) Cargo-selective SNX-BAR proteins mediate retromer trimer independent retrograde transport. J Cell Biol 216:3677–3693. https://doi.org/10.1083/jcb.201702137

    Article  CAS  Google Scholar 

  14. McNally KE, Cullen PJ (2018) Endosomal retrieval of cargo: retromer is not alone. Trends Cell Biol 28:807–822. https://doi.org/10.1016/j.tcb.2018.06.005

    Article  CAS  Google Scholar 

  15. Yap CC, Digilio L, McMahon LP et al (2018) Degradation of dendritic cargos requires Rab7-dependent transport to somatic lysosomes. J Cell Biol 217:3141–3159. https://doi.org/10.1083/jcb.201711039

    Article  CAS  Google Scholar 

  16. Bright NA, Davis LJ, Luzio JP (2016) Endolysosomes are the principal intracellular sites of acid hydrolase activity. Curr Biol 26:2233–2245. https://doi.org/10.1016/j.cub.2016.06.046

    Article  CAS  Google Scholar 

  17. Lie PPY, Yang D-S, Stavrides P et al (2021) Post-Golgi carriers, not lysosomes, confer lysosomal properties to pre-degradative organelles in normal and dystrophic axons. Cell Rep 35:109034. https://doi.org/10.1016/j.celrep.2021.109034

    Article  CAS  Google Scholar 

  18. Farfel-Becker T, Roney JC, Cheng X-T et al (2019) Neuronal soma-derived degradative lysosomes are continuously delivered to distal axons to maintain local degradation capacity. Cell Rep 28:51–64.e4. https://doi.org/10.1016/j.celrep.2019.06.013

    Article  CAS  Google Scholar 

  19. Uhlen M, Bandrowski A, Carr S et al (2016) A proposal for validation of antibodies. Nat Methods 13:823–827. https://doi.org/10.1038/nmeth.3995

    Article  CAS  Google Scholar 

  20. Chen CS, Chen WN, Zhou M et al (2000) Probing the cathepsin D using a BODIPY FL-pepstatin A: applications in fluorescence polarization and microscopy. J Biochem Biophys Methods 42:137–151. https://doi.org/10.1016/S0165-022X(00)00048-8

    Article  CAS  Google Scholar 

  21. Cheng X-T, Xie Y-X, Zhou B et al (2018) Characterization of LAMP1-labeled nondegradative lysosomal and endocytic compartments in neurons. J Cell Biol 217:3127–3139. https://doi.org/10.1083/jcb.201711083

    Article  CAS  Google Scholar 

  22. Pols MS, van Meel E, Oorschot V et al (2013) hVps41 and VAMP7 function in direct TGN to late endosome transport of lysosomal membrane proteins. Nat Commun 4:1361. https://doi.org/10.1038/ncomms2360

    Article  CAS  Google Scholar 

  23. Boonen M, Staudt C, Gilis F et al (2016) Cathepsin D and its newly identified transport receptor SEZ6L2 can modulate neurite outgrowth. J Cell Sci 129:557–568. https://doi.org/10.1242/jcs.179374

    Article  CAS  Google Scholar 

  24. Méresse S, Hoflack B (1993) Phosphorylation of the cation-independent mannose 6-phosphate receptor is closely associated with its exit from the trans-Golgi network. J Cell Biol 120:67–75. https://doi.org/10.1083/jcb.120.1.67

    Article  Google Scholar 

  25. Olson LJ, Peterson FC, Castonguay A et al (2010) Structural basis for recognition of phosphodiester-containing lysosomal enzymes by the cation-independent mannose 6-phosphate receptor. Proc Natl Acad Sci U S A 107:12493–12498. https://doi.org/10.1073/pnas.1004232107

    Article  Google Scholar 

  26. Rohrer J, Kornfeld R (2001) Lysosomal hydrolase mannose 6-phosphate uncovering enzyme resides in the trans-Golgi network. Mol Biol Cell 12:1623–1631. https://doi.org/10.1091/mbc.12.6.1623

    Article  CAS  Google Scholar 

  27. Waguri S, Tomiyama Y, Ikeda H et al (2006) The luminal domain participates in the endosomal trafficking of the cation-independent mannose 6-phosphate receptor. Exp Cell Res 312:4090–4107. https://doi.org/10.1016/j.yexcr.2006.09.024

    Article  CAS  Google Scholar 

  28. Griffiths G, Hoflack B, Simons K et al (1988) The mannose 6-phosphate receptor and the biogenesis of lysosomes. Cell 52:329–341. https://doi.org/10.1016/s0092-8674(88)80026-6

    Article  CAS  Google Scholar 

  29. Hoflack B, Kornfeld S (1985) Lysosomal enzyme binding to mouse P388D1 macrophage membranes lacking the 215-kDa mannose 6-phosphate receptor: evidence for the existence of a second mannose 6-phosphate receptor. Proc Natl Acad Sci U S A 82:4428–4432. https://doi.org/10.1073/pnas.82.13.4428

    Article  CAS  Google Scholar 

  30. Ghosh P, Dahms NM, Kornfeld S (2003) Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol 4:202–212. https://doi.org/10.1038/nrm1050

    Article  CAS  Google Scholar 

  31. Rojas R, van Vlijmen T, Mardones GA et al (2008) Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. J Cell Biol 183:513–526. https://doi.org/10.1083/jcb.200804048

    Article  CAS  Google Scholar 

  32. Seaman MNJ (2021) The retromer complex: from genesis to revelations. Trends Biochem Sci 46:608–620. https://doi.org/10.1016/j.tibs.2020.12.009

    Article  CAS  Google Scholar 

  33. Waguri S, Dewitte F, Le Borgne R et al (2003) Visualization of TGN to endosome trafficking through fluorescently labeled MPR and AP-1 in living cells. Mol Biol Cell 14:142–155. https://doi.org/10.1091/mbc.e02-06-0338

    Article  CAS  Google Scholar 

  34. Díaz E, Pfeffer SR (1998) TIP47: a cargo selection device for mannose 6-phosphate receptor trafficking. Cell 93:433–443. https://doi.org/10.1016/s0092-8674(00)81171-x

    Article  Google Scholar 

  35. Bonet-Ponce L, Beilina A, Williamson CD et al (2020) LRRK2 mediates tubulation and vesicle sorting from lysosomes. Sci Adv. https://doi.org/10.1126/sciadv.abb2454

  36. Allison R, Lumb JH, Fassier C et al (2013) An ESCRT-spastin interaction promotes fission of recycling tubules from the endosome. J Cell Biol 202:527–543. https://doi.org/10.1083/jcb.201211045

    Article  CAS  Google Scholar 

  37. Saric A, Hipolito VEB, Kay JG et al (2016) mTOR controls lysosome tubulation and antigen presentation in macrophages and dendritic cells. Mol Biol Cell 27:321–333. https://doi.org/10.1091/mbc.E15-05-0272

    Article  CAS  Google Scholar 

  38. Wang S, Zhao Z, Rodal AA (2019) Higher-order assembly of Sorting Nexin 16 controls tubulation and distribution of neuronal endosomes. J Cell Biol 218:2600–2618. https://doi.org/10.1083/jcb.201811074

    Article  CAS  Google Scholar 

  39. Yu L, McPhee CK, Zheng L et al (2010) Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465:942–946. https://doi.org/10.1038/nature09076

    Article  CAS  Google Scholar 

  40. Mesaki K, Tanabe K, Obayashi M et al (2011) Fission of tubular endosomes triggers endosomal acidification and movement. PLoS One 6:e19764. https://doi.org/10.1371/journal.pone.0019764

    Article  CAS  Google Scholar 

  41. Pratt MR, Sekedat MD, Chiang KP, Muir TW (2009) Direct measurement of cathepsin B activity in the cytosol of apoptotic cells by an activity-based probe. Chem Biol 16:1001–1012. https://doi.org/10.1016/j.chembiol.2009.07.011

    Article  CAS  Google Scholar 

  42. Lasiecka ZM, Winckler B (2016) Studying endosomes in cultured neurons by live-cell imaging. Methods Cell Biol 131:389–408. https://doi.org/10.1016/bs.mcb.2015.07.002

    Article  Google Scholar 

  43. Chin MY, Patwardhan AR, Ang K-H et al (2021) Genetically encoded, pH-sensitive mTFP1 biosensor for probing lysosomal pH. ACS Sens 6:2168–2180. https://doi.org/10.1021/acssensors.0c02318

    Article  CAS  Google Scholar 

  44. Deschamps A, Colinet A-S, Zimmermannova O et al (2020) A new pH sensor localized in the Golgi apparatus of Saccharomyces cerevisiae reveals unexpected roles of Vph1p and Stv1p isoforms. Sci Rep 10:1881. https://doi.org/10.1038/s41598-020-58795-w

    Article  CAS  Google Scholar 

  45. Webb BA, Cook J, Wittmann T, Barber DL (2020) pHLARE: a genetically encoded ratiometric lysosome pH biosensor. BioRxiv. https://doi.org/10.1101/2020.06.03.132720

  46. Ponsford AH, Ryan TA, Raimondi A et al (2021) Live imaging of intra-lysosome pH in cell lines and primary neuronal culture using a novel genetically encoded biosensor. Autophagy 17:1500–1518. https://doi.org/10.1080/15548627.2020.1771858

    Article  CAS  Google Scholar 

  47. Webb BA, Aloisio FM, Charafeddine RA et al (2021) pHLARE: a new biosensor reveals decreased lysosome pH in cancer cells. Mol Biol Cell 32:131–142. https://doi.org/10.1091/mbc.E20-06-0383

    Article  CAS  Google Scholar 

  48. Lipsky NG, Pagano RE (1983) Sphingolipid metabolism in cultured fibroblasts: microscopic and biochemical studies employing a fluorescent ceramide analogue. Proc Natl Acad Sci U S A 80:2608–2612. https://doi.org/10.1073/pnas.80.9.2608

    Article  CAS  Google Scholar 

  49. Deng Y, Rivera-Molina FE, Toomre DK, Burd CG (2016) Sphingomyelin is sorted at the trans Golgi network into a distinct class of secretory vesicle. Proc Natl Acad Sci U S A 113:6677–6682. https://doi.org/10.1073/pnas.1602875113

    Article  CAS  Google Scholar 

  50. Pagano RE, Martin OC, Kang HC, Haugland RP (1991) A novel fluorescent ceramide analogue for studying membrane traffic in animal cells: accumulation at the Golgi apparatus results in altered spectral properties of the sphingolipid precursor. J Cell Biol 113:1267–1279. https://doi.org/10.1083/jcb.113.6.1267

    Article  CAS  Google Scholar 

  51. Martin OC, Pagano RE (1994) Internalization and sorting of a fluorescent analogue of glucosylceramide to the Golgi apparatus of human skin fibroblasts: utilization of endocytic and nonendocytic transport mechanisms. J Cell Biol 125:769–781. https://doi.org/10.1083/jcb.125.4.769

    Article  CAS  Google Scholar 

  52. Helms JB, Rothman JE (1992) Inhibition by brefeldin a of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature 360:352–354. https://doi.org/10.1038/360352a0

    Article  CAS  Google Scholar 

  53. Strous GJ, van Kerkhof P, van Meer G et al (1993) Differential effects of brefeldin A on transport of secretory and lysosomal proteins. J Biol Chem 268:2341–2347

    Article  CAS  Google Scholar 

  54. Wood SA, Brown WJ (1992) The morphology but not the function of endosomes and lysosomes is altered by brefeldin a. J Cell Biol 119:273–285. https://doi.org/10.1083/jcb.119.2.273

    Article  CAS  Google Scholar 

  55. Yap CC, Wisco D, Kujala P et al (2008) The somatodendritic endosomal regulator NEEP21 facilitates axonal targeting of L1/NgCAM. J Cell Biol 180:827–842. https://doi.org/10.1083/jcb.200707143

    Article  CAS  Google Scholar 

  56. Feng S, Arnold DB (2016) Techniques for studying protein trafficking and molecular motors in neurons. Cytoskeleton (Hoboken) 73:508–515. https://doi.org/10.1002/cm.21274

    Article  CAS  Google Scholar 

  57. Hangen E, Cordelières FP, Petersen JD et al (2018) Neuronal activity and intracellular calcium levels regulate intracellular transport of newly synthesized AMPAR. Cell Rep 24:1001–1012.e3. https://doi.org/10.1016/j.celrep.2018.06.095

    Article  CAS  Google Scholar 

  58. Al-Bassam S, Xu M, Wandless TJ, Arnold DB (2012) Differential trafficking of transport vesicles contributes to the localization of dendritic proteins. Cell Rep 2:89–100. https://doi.org/10.1016/j.celrep.2012.05.018

    Article  CAS  Google Scholar 

  59. Boncompain G, Divoux S, Gareil N et al (2012) Synchronization of secretory protein traffic in populations of cells. Nat Methods 9:493–498. https://doi.org/10.1038/nmeth.1928

    Article  CAS  Google Scholar 

  60. Chen Y, Gershlick DC, Park SY, Bonifacino JS (2017) Segregation in the Golgi complex precedes export of endolysosomal proteins in distinct transport carriers. J Cell Biol 216:4141–4151. https://doi.org/10.1083/jcb.201707172

    Article  CAS  Google Scholar 

  61. Kametaka S, Waguri S (2012) Visualization of TGN-endosome trafficking in mammalian and Drosophila cells. Meth Enzymol 504:255–271. https://doi.org/10.1016/B978-0-12-391857-4.00013-6

    Article  CAS  Google Scholar 

  62. Chen D, Gibson ES, Kennedy MJ (2013) A light-triggered protein secretion system. J Cell Biol 201:631–640. https://doi.org/10.1083/jcb.201210119

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chan Choo Yap or Bettina Winckler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mulligan, R.J., Yap, C.C., Winckler, B. (2023). Endosomal Transport to Lysosomes and the Trans-Golgi Network in Neurons and Other Cells: Visualizing Maturational Flux. In: Wang, Y., Lupashin, V.V., Graham, T.R. (eds) Golgi. Methods in Molecular Biology, vol 2557. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2639-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2639-9_36

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2638-2

  • Online ISBN: 978-1-0716-2639-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics