Skip to main content

Modeling the Cryo-EM Structure of the Exocyst Complex

  • Protocol
  • First Online:
Golgi

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2557))

  • 1427 Accesses

Abstract

Multi-subunit tethering complexes (MTCs) are a family of evolutionarily conserved large protein complexes that function to tether intracellular vesicles from the donor compartments to the membrane of receptor compartments. The exocyst complex is an octameric MTC that tethers the post-Golgi secretory vesicles to the plasma membrane. To learn the function and regulation of the exocyst complex, it is crucial to understand the structure of the complex. We have solved the cryo-EM structure of the exocyst complex at 4.4 Angstrom (Å) resolution and detected the spatial relationship between the eight subunits using chemical cross-linking mass spectrometry. Here, we describe the method of modeling and validating the cryo-EM structure of the exocyst complex. This method could provide a guide for modeling of other protein complexes of which the structures are solved at medium to near-atomic resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cai H, Reinisch K, Ferro-Novick S (2007) Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 12:671–682

    Article  CAS  Google Scholar 

  2. Mei K, Guo W (2018) The exocyst complex. Curr Biol 28:R922–R925

    Article  CAS  Google Scholar 

  3. TerBush DR, Maurice T, Roth D et al (1996) The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J 15:6483–6494

    Article  CAS  Google Scholar 

  4. Kee Y, Yoo J-S, Hazuka CD et al (1997) Subunit structure of the mammalian exocyst complex. Proc Natl Acad Sci 94:14438–14443

    Article  CAS  Google Scholar 

  5. Yamashita M, Kurokawa K, Sato Y et al (2010) Structural basis for the Rho- and phosphoinositide-dependent localization of the exocyst subunit Sec3. Nat Struct Mol Biol 17:180–186

    Article  CAS  Google Scholar 

  6. Baek K, Knödler A, Lee SH et al (2010) Structure-function study of the N-terminal domain of exocyst subunit Sec3. J Biol Chem 285:10424–10433

    Article  CAS  Google Scholar 

  7. Jin R, Junutula JR, Matern HT et al (2005) Exo84 and Sec5 are competitive regulatory Sec6/8 effectors to the RalA GTPase. EMBO J 24:2064–2074

    Article  CAS  Google Scholar 

  8. Wu S, Mehta SQ, Pichaud F et al (2005) Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo. Nat Struct Mol Biol 12:879–885

    Article  CAS  Google Scholar 

  9. Fukai S, Matern HT, Jagath JR et al (2003) Structural basis of the interaction between RalA and Sec5, a subunit of the sec6/8 complex. EMBO J 22:3267–3278

    Article  CAS  Google Scholar 

  10. Sivaram MVS, Furgason MLM, Brewer DN et al (2006) The structure of the exocyst subunit Sec6p defines a conserved architecture with diverse roles. Nat Struct Mol Biol 13:555–556

    Article  CAS  Google Scholar 

  11. Dong G, Hutagalung AH, Fu C et al (2005) The structures of exocyst subunit Exo70p and the Exo84p C-terminal domains reveal a common motif. Nat Struct Mol Biol 12:1094–1100

    Article  CAS  Google Scholar 

  12. Zhang C, Brown MQ, van de Ven W et al (2016) Endosidin2 targets conserved exocyst complex subunit EXO70 to inhibit exocytosis. Proc Natl Acad Sci U S A 113:E41–E50

    CAS  Google Scholar 

  13. Hamburger ZA, Hamburger AE, West AP et al (2006) Crystal structure of the S. cerevisiae exocyst component Exo70p. J Mol Biol 356:9–21

    Article  CAS  Google Scholar 

  14. Chen J, Yamagata A, Kubota K et al (2017) Crystal structure of Sec10, a subunit of the exocyst complex. Sci Rep 7:40909

    Article  CAS  Google Scholar 

  15. Moore BA, Robinson HH, Xu Z (2007) The crystal structure of mouse Exo70 reveals unique features of the mammalian exocyst. J Mol Biol 371:410–421

    Article  CAS  Google Scholar 

  16. Mei K, Li Y, Wang S et al (2018) Cryo-EM structure of the exocyst complex. Nat Struct Mol Biol 25:139–146

    Article  CAS  Google Scholar 

  17. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF chimera--a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  18. Wriggers W, Milligan RA, McCammon JA (1999) Situs: a package for docking crystal structures into low-resolution maps from electron microscopy. J Struct Biol 125:185–195

    Article  CAS  Google Scholar 

  19. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  Google Scholar 

  20. Adams PD, Afonine PV, Bunkóczi G et al (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221

    Article  CAS  Google Scholar 

  21. Bernhofer M, Dallago C, Karl T et al (2021) PredictProtein – predicting protein structure and function for 29 years. Nucleic Acids Res 49(W1):W535–W540

    Article  CAS  Google Scholar 

  22. Biasini M, Bienert S, Waterhouse A et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258

    Article  CAS  Google Scholar 

  23. Kelley LA, Mezulis S, Yates CM et al (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858

    Article  CAS  Google Scholar 

  24. Lau K, Van Petegem F (2014) Crystal structures of wild type and disease mutant forms of the ryanodine receptor SPRY2 domain. Nat Commun 5:5397

    Article  CAS  Google Scholar 

  25. Jumper J, Evans R, Pritzel A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589

    Article  CAS  Google Scholar 

  26. Tunyasuvunakool K, Adler J, Wu Z et al (2021) Highly accurate protein structure prediction for the human proteome. Nature 596:590–596

    Article  CAS  Google Scholar 

  27. Ding Y-H, Fan S-B, Li S et al (2016) Increasing the depth of mass-spectrometry-based structural analysis of protein complexes through the use of multiple cross-linkers. Anal Chem 88:4461–4469

    Article  CAS  Google Scholar 

  28. Yang B, Wu Y-J, Zhu M et al (2012) Identification of cross-linked peptides from complex samples. Nat Methods 9:904–906

    Article  CAS  Google Scholar 

  29. Ding Y-H, Gong Z, Dong X et al (2017) Modeling protein excited-state structures from “over-length” chemical cross-links. J Biol Chem 292:1187–1196

    Article  CAS  Google Scholar 

  30. Herzog F, Kahraman A, Boehringer D et al (2012) Structural probing of a protein phosphatase 2A network by chemical cross-linking and mass spectrometry. Science 337:1348–1352

    Article  CAS  Google Scholar 

  31. Erzberger JP, Stengel F, Pellarin R et al (2014) Molecular architecture of the 40S·eIF1·eIF3 translation initiation complex. Cell 158:1123–1135

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank Yirong Liu for helpful suggestions. This work is supported by National Institutes of Health grant R35GM141832 to W.G., National Science Foundation of China (Grant 91954112 and 31900501), and Young Elite Scientists Sponsorship Program by Tianjin (TJSQNTJ-2020-19) to K.M.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kunrong Mei or Wei Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mei, K., Guo, W. (2023). Modeling the Cryo-EM Structure of the Exocyst Complex. In: Wang, Y., Lupashin, V.V., Graham, T.R. (eds) Golgi. Methods in Molecular Biology, vol 2557. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2639-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2639-9_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2638-2

  • Online ISBN: 978-1-0716-2639-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics