Skip to main content

Genome-Scale Modeling and Systems Metabolic Engineering of Vibrio natriegens for the Production of 1,3-Propanediol

  • Protocol
  • First Online:
Computational Biology and Machine Learning for Metabolic Engineering and Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2553))

Abstract

The fastest-growing bacterium Vibrio natriegens is a highly promising next-generation workhorse for molecular biology and industrial biotechnology. In this work, we described the workflows for developing genome-scale metabolic models and genome-editing protocols for engineering Vibrio natriegens. A case study for metabolic engineering of Vibrio natriegens for the production of 1,3-propanediol was also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Weinstock MT, Hesek ED, Wilson CM et al (2016) Vibrio natriegens as a fast-growing host for molecular biology. Nat Methods 13(10):849–851

    Article  CAS  PubMed  Google Scholar 

  2. Maida I, Bosi E, Perrin E et al (2013) Draft genome sequence of the fast-growing bacterium vibrio natriegens strain DSMZ 759. Genome Announc 1(4):e00648–e00613

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hoffart E, Grenz S, Lange J et al (2017) High substrate uptake rates empower Vibrio natriegens as production host for industrial biotechnology. Appl Environ Microbiol 83(22):e01614–e01617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Erian AM, Freitag P, Gibisch M et al (2020) High rate 2,3-butanediol production with Vibrio natriegens. Bioresour Technol Rep 10:100408

    Article  Google Scholar 

  5. Zhang Y, Li Z, Liu Y et al (2021) Systems metabolic engineering of Vibrio natriegens for the production of 1,3-propanediol. Metab Eng 65:52–65

    Article  CAS  PubMed  Google Scholar 

  6. Becker W, Wimberger F, Zangger K (2019) Vibrio natriegens: an alternative expression system for the high-yield production of isotopically labeled proteins. Biochemistry 58(25):2799–2803

    Article  CAS  PubMed  Google Scholar 

  7. Schleicher L, Muras V, Claussen B et al (2018) Vibrio natriegens as host for expression of multisubunit membrane protein complexes. Front Microbiol 2018:2537

    Article  Google Scholar 

  8. Xu J, Dong F, Wu M et al (2021) Vibrio natriegens as a pET-compatible expression host complementary to Escherichia coli. Front Microbiol 12:147

    Google Scholar 

  9. Des Soye BJ, Davidson SR, Weinstock MT et al (2018) Establishing a high-yielding cell-free protein synthesis platform derived from Vibrio natriegens. ACS Synth Biol 7(9):2245–2255

    Article  CAS  PubMed  Google Scholar 

  10. Wiegand DJ, Lee HH, Ostrov N et al (2018) Establishing a cell-free Vibrio natriegens expression system. ACS Synth Biol 7(10):2475–2479

    Article  CAS  PubMed  Google Scholar 

  11. Wang Z, Tschirhart T, Schultzhaus Z et al (2020) Melanin produced by the fast-growing marine bacterium vibrio natriegens through heterologous biosynthesis: characterization and application. Appl Environ Microbiol 86(5):e02749–e02719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dalia TN, Hayes CA, Stolyar S et al (2017) Multiplex genome editing by natural transformation (MuGENT) for synthetic biology in Vibrio natriegens. ACS Synth Biol 6(9):1650–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee HH, Ostrov N, Wong BG et al (2019) Functional genomics of the rapidly replicating bacterium Vibrio natriegens by CRISPRi. Nat Microbiol 4(7):1105–1113

    Article  CAS  PubMed  Google Scholar 

  14. Tschirhart T, Shukla V, Kelly EE et al (2019) Synthetic biology tools for the fast-growing marine bacterium Vibrio natriegens. ACS Synth Biol 8(9):2069–2079

    Article  CAS  PubMed  Google Scholar 

  15. Kim B, Kim WJ, Kim DI et al (2015) Applications of genome-scale metabolic network model in metabolic engineering. J Ind Microbiol Biotechnol 42(3):339–348

    Article  CAS  PubMed  Google Scholar 

  16. Zhang C, Hua Q (2015) Applications of genome-scale metabolic models in biotechnology and systems medicine. Front Physiol 6:413

    PubMed  Google Scholar 

  17. Pollack-Berti A, Wollenberg MS, Ruby EG (2010) Natural transformation of Vibrio fischeri requires tfoX and tfoY. Environ Microbiol 12(8):2302–2311

    PubMed  PubMed Central  Google Scholar 

  18. Orth JD, Conrad TM, Na J et al (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism. Mol Syst Biol 7:535

    Article  PubMed  PubMed Central  Google Scholar 

  19. Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5(1):93–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Karlsen E, Schulz C, Almaas E (2018) Automated generation of genome-scale metabolic draft reconstructions based on KEGG. BMC Bioinformatics 19(1):467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Allen B, Drake M, Harris N et al (2017) Using KBase to assemble and annotate prokaryotic genomes. Curr Protoc Microbiol 46(1):1E 13 1–1E 13 18

    Article  Google Scholar 

  22. Devoid S, Overbeek R, DeJongh M et al (2013) Automated genome annotation and metabolic model reconstruction in the SEED and Model SEED. Methods Mol Biol 985(985):17–45

    Article  CAS  PubMed  Google Scholar 

  23. Abecasis GR, Cherny SS, Cookson WO et al (2002) Merlin–rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30(1):97–101

    Article  CAS  PubMed  Google Scholar 

  24. Caspi R, Altman T, Dreher K et al (2012) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 40(Database issue):D742–D753

    Article  CAS  PubMed  Google Scholar 

  25. Wang H, Marcisauskas S, Sanchez BJ et al (2018) RAVEN 2.0: a versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor. PLoS Comput Biol 14(10):e1006541

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mendoza SN, Olivier BG, Molenaar D et al (2019) A systematic assessment of current genome-scale metabolic reconstruction tools. Genome Biol 20(1):158

    Article  PubMed  PubMed Central  Google Scholar 

  27. Aite M, Chevallier M, Frioux C et al (2018) Traceability, reproducibility and wiki-exploration for “a-la-carte” reconstructions of genome-scale metabolic models. PLoS Comput Biol 14(5):e1006146

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hyduke D, Hyduke D, Schellenberger J et al (2011) COBRA toolbox 2.0. Protocol Exchange. https://doi.org/10.1038/protex.2011.234

  29. Vilaça P, Noronha A, Rocha I et al (2014) Visualization Plugin for Optflux: tools for the creation of metabolic layouts and analysis of flux distributions. COBRA 2014 - 3rd Conference on Constraint-Based Reconstruction and Analysis. Charlottesville, VA, USA

    Google Scholar 

  30. Heirendt L, Arreckx S, Pfau T et al (2019) Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat Protoc 14(3):639–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gonzales MF, Brooks T, Pukatzki SU et al (2013) Rapid protocol for preparation of electrocompetent Escherichia coli and Vibrio cholerae. J Vis Exp 80:e50684

    Google Scholar 

  32. Dalia AB, McDonough E, Camilli A (2014) Multiplex genome editing by natural transformation. Proc Natl Acad Sci U S A 111(24):8937–8942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang Y, Liu D, Chen Z (2017) Production of C2-C4 diols from renewable bioresources: new metabolic pathways and metabolic engineering strategies. Biotechnol Biofuels 10:299

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bocs S, Cruveiller S, Vallenet D et al (2003) AMIGene: annotation of MIcrobial genes. Nucleic Acids Res 31(13):3723–3726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Profiti G, Martelli PL, Casadio R (2017) The Bologna annotation resource (BAR 3.0): improving protein functional annotation. Nucleic Acids Res 45(W1):W285–W290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liolios K, Chen IM, Mavromatis K et al (2010) The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 38(Database issue):D346–D354

    Article  CAS  PubMed  Google Scholar 

  38. Moriya Y, Itoh M, Okuda S et al (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35(Web Server issue):W182–W185

    Article  PubMed  PubMed Central  Google Scholar 

  39. Maglott D, Ostell J, Pruitt KD et al (2005) Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res 33(Database issue):D54–D58

    Article  CAS  PubMed  Google Scholar 

  40. Aziz RK, Bartels D, Best AA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9(1):75

    Article  PubMed  PubMed Central  Google Scholar 

  41. Scheer M, Grote A, Chang A et al (2011) BRENDA, the enzyme information system in 2011. Nucleic Acids Res 39(Database issue):D670–D676

    Article  CAS  PubMed  Google Scholar 

  42. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang Y, Xiao J, Suzek TO et al (2009) PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 37(Web Server issue):W623–W633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Saier MH Jr, Tran CV, Barabote RD (2006) TCDB: the transporter classification database for membrane transport protein analyses and information. Nucleic Acids Res 34(Database issue):D181–D186

    Article  CAS  PubMed  Google Scholar 

  45. Elbourne LD, Tetu SG, Hassan KA et al (2017) TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Res 45(D1):D320–D324

    Article  CAS  PubMed  Google Scholar 

  46. Wu CH, Apweiler R, Bairoch A et al (2006) The uUniversal Protein Resource (UniProt): an expanding universe of protein information. Nucleic Acids Res 34(Database issue):D187–D191

    Article  CAS  PubMed  Google Scholar 

  47. Van Domselaar GH, Stothard P, Shrivastava S et al (2005) BASys: a web server for automated bacterial genome annotation. Nucleic Acids Res 33(Web Server issue):W455–W459

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24(1):34–35

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by genome-scale metabolic model the National Natural Science Foundation of China (Grant Nos. 21878172, 21938004, and 22078172), the National Key R&D Program of China (No. 2018YFA0901500), and the DongGuan Innovative Research Team Program (No. 201536000100033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, Y., Liu, D., Chen, Z. (2023). Genome-Scale Modeling and Systems Metabolic Engineering of Vibrio natriegens for the Production of 1,3-Propanediol. In: Selvarajoo, K. (eds) Computational Biology and Machine Learning for Metabolic Engineering and Synthetic Biology. Methods in Molecular Biology, vol 2553. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2617-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2617-7_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2616-0

  • Online ISBN: 978-1-0716-2617-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics