Skip to main content

Spectrally Resolved FRET Microscopy of α-Synuclein Phase-Separated Liquid Droplets

  • Protocol
  • First Online:
Protein Aggregation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2551))

Abstract

Liquid-liquid phase separation (LLPS) has emerged as an important phenomenon associated with formation of membraneless organelles. Recently, LLPS has been shown to act as nucleation centers for disease-associated protein aggregation and amyloid fibril formation. Phase-separated α-synuclein droplets gradually rigidify during the course of protein aggregation, and it is very challenging to understand the biomolecular interactions that lead to liquid-like to solid-like transition using conventional ensemble measurements. Here, we describe a spectrally-resolved fluorescence microscopy based Förster resonance energy transfer (FRET) imaging to probe interactions of α-synuclein in individual droplets during LLPS-mediated aggregation. By acquiring entire emission spectral profiles of individual droplets upon sequential excitation of acceptors and donors therein, this technique allows for the quantification of sensitized emission proportional to the extent of FRET, which enables interrogation of the evolution of local interactions of donor-/acceptor-labeled α-synuclein molecules within each droplet. The present study on single droplets is not only an important development for studying LLPS but can also be used to investigate self-assembly or aggregation in biomolecular systems and soft materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Banani SF, Rice AM, Peeples WB et al (2016) Compositional control of phase-separated cellular bodies. Cell 166:651–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shin Y, Brangwynne CP (2017) Liquid phase condensation in cell physiology and disease. Science 357:eaaf4382

    Article  PubMed  Google Scholar 

  3. Riback JA, Katanski CD, Kear-Scott JL et al (2017) Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168:1028–1040.e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Banani SF, Lee HO, Hyman AA et al (2017) Biomolecular condensates: Organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18:285–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brangwynne CP, Eckmann CR, Courson DS et al (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324:1729–1732

    Article  CAS  PubMed  Google Scholar 

  6. Hyman AA, Weber CA, Jülicher F (2014) Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol 30:39–58

    Article  CAS  PubMed  Google Scholar 

  7. Boeynaems S, Alberti S, Fawzi NL et al (2018) Protein phase separation: a new phase in cell biology. Trends Cell Biol 28:420–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alberti S (2017) Phase separation in biology. Curr Biol 27:R1097–R1102

    Article  CAS  PubMed  Google Scholar 

  9. Holehouse AS, Pappu RV (2018) Functional implications of intracellular phase transitions. Biochemistry 57:2415–2423

    Article  CAS  PubMed  Google Scholar 

  10. Feric M, Vaidya N, Harmon TS et al (2016) Coexisting liquid phases underlie nucleolar subcompartments. Cell 165:1686–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kaiser TE, Intine RV, Dundr M (2008) De novo formation of a subnuclear body. Science 322:1713–1717

    Article  CAS  PubMed  Google Scholar 

  12. Lin Y, Protter DSW, Rosen MK et al (2015) Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol Cell 60:208–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brangwynne CP, Tompa P, Pappu RV (2015) Polymer physics of intracellular phase transitions. Nat Phys 11:899–904

    Article  CAS  Google Scholar 

  14. Wei MT, Elbaum-Garfinkle S, Holehouse AS et al (2017) Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles. Nat Chem 9:1118–1125

    Article  CAS  PubMed  Google Scholar 

  15. Molliex A, Temirov J, Lee J et al (2015) Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163:123–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nott TJ, Petsalaki E, Farber P et al (2015) Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell 57:936–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang H, Elbaum-Garfinkle S, Langdon EM et al (2015) RNA controls polyQ protein phase transitions. Mol Cell 60:220–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vecchi G, Sormanni P, Mannini B et al (2020) Proteome-wide observation of the phenomenon of life on the edge of solubility. Proc Natl Acad Sci USA 117:1015–1020

    Article  CAS  PubMed  Google Scholar 

  19. Boke E, Ruer M, Wühr M et al (2016) Amyloid-like self-assembly of a cellular compartment. Cell 166:637–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Murakami T, Qamar S, Lin JQ et al (2015) ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron 88:678–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Patel A, Lee HO, Jawerth L et al (2015) A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162:1066–1077

    Article  CAS  PubMed  Google Scholar 

  22. Wegmann S, Eftekharzadeh B, Tepper K et al (2018) Tau protein liquid–liquid phase separation can initiate tau aggregation. EMBO J 37:e98049

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ambadipudi S, Biernat J, Riedel D et al (2017) Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau. Nat Commun 8:275

    Article  PubMed  PubMed Central  Google Scholar 

  24. Conicella AE, Zerze GH, Mittal J et al (2016) ALS mutations disrupt phase separation mediated by α-helical structure in the TDp-43 low-complexity c-terminal domain. Structure 24:1537–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ray S, Singh N, Kumar R et al (2020) α-Synuclein aggregation nucleates through liquid–liquid phase separation. Nat Chem 12:705–716

    Article  CAS  PubMed  Google Scholar 

  26. Goldman RD, Spector DL, Masters BR (2006) Live cell imaging, a laboratory manual. J Biomed Opt 11:019901

    Article  Google Scholar 

  27. Bolte S, Cordelières FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232

    Article  CAS  PubMed  Google Scholar 

  28. Hu K, Johnson J, Florens L, Fraunholz M et al (2006) Cytoskeletal components of an invasion machine – the apical complex of Toxoplasma gondii. PLoS Pathog 2:0121–0138

    Article  CAS  Google Scholar 

  29. Kumar P, Lyle KS, Gierke S et al (2009) GSK33 phosphorylation modulates CLASP-microtubule association and lamella microtubule attachment. J Cell Biol 184:895–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Waters JC (2009) Accuracy and precision in quantitative fluorescence microscopy. J Cell Biol 185:1135–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gordon GW, Berry G, Liang XH et al (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J 74:2702–2713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zeug A, Woehler A, Neher E, Ponimaskin EG (2012) Quantitative intensity-based FRET approaches – a comparative snapshot. Biophys J 103:1821–1827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pentcheva T, Edidin M (2001) Clustering of peptide-loaded MHC class I molecules for endoplasmic reticulum export imaged by fluorescence resonance energy transfer. J Immunol 166:6625–6632

    Article  CAS  PubMed  Google Scholar 

  34. Andrews DL (1989) A unified theory of radiative and radiationless molecular energy transfer. Chem Phys 135:195–201

    Article  CAS  Google Scholar 

  35. Sekar RB, Periasamy A (2003) Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol 160:629–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, US, Boston, MA

    Book  Google Scholar 

  37. Kenworthy AK (2001) Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy. Methods 24:289–296

    Article  CAS  PubMed  Google Scholar 

  38. Periasamy A (2001) Fluorescence resonance energy transfer microscopy: a mini review. J Biomed Opt 6:287

    Article  CAS  PubMed  Google Scholar 

  39. Lemke EA, Deniz AA (2011) Förster resonance energy transfer. In: Comprehensive nanoscience and technology. Elsevier, pp 127–151

    Chapter  Google Scholar 

  40. Berney C, Danuser G (2003) FRET or no FRET: a quantitative comparison. Biophys J 84:3992–4010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kapanidis AN, Laurence TA, Nam KL et al (2005) Alternating-laser excitation of single molecules. Acc Chem Res 38:523–533

    Article  CAS  PubMed  Google Scholar 

  42. Das S, Sharma DK, Chakrabarty S et al (2015) Bioactive polymersomes self-assembled from amphiphilic PPO-glyco polypeptides: Synthesis, characterization, and dual-dye encapsulation. Langmuir 31:3402–3412

    Article  CAS  PubMed  Google Scholar 

  43. Sarkar A, Behera T, Sasmal R et al (2020) Cooperative supramolecular block copolymerization for the synthesis of functional axial organic heterostructures. J Am Chem Soc 142:11528–11539

    Article  CAS  PubMed  Google Scholar 

  44. Bates M, Jones SA, Zhuang X (2013) Stochastic optical reconstruction microscopy (STORM): a method for superresolution fluorescence imaging. Cold Spring Harb Protoc 8:498–520

    Google Scholar 

  45. Möckl L, Lamb DC, Bräuchle C (2014) Super-resolved fluorescence microscopy: Nobel prize in chemistry 2014 for Eric Betzig, Stefan Hell, and William E. Moerner. Angew Chemie Int Ed Engl 53:13972–13977

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samir K. Maji or Arindam Chowdhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mahato, J., Ray, S., Maji, S.K., Chowdhury, A. (2023). Spectrally Resolved FRET Microscopy of α-Synuclein Phase-Separated Liquid Droplets. In: Cieplak, A.S. (eds) Protein Aggregation. Methods in Molecular Biology, vol 2551. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2597-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2597-2_27

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2596-5

  • Online ISBN: 978-1-0716-2597-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics