Skip to main content

Simultaneous Detection of Inflammasome Activation and Membrane Damage During Pyroptosis

  • Protocol
  • First Online:
Apoptosis and Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2543))

Abstract

Pyroptosis is a highly regulated inflammatory form of cell death that plays a role in many different diseases, including cancer. Pyroptosis was initially described to be mediated by caspase-1, which is activated by innate immune signaling complexes called inflammasomes. Inflammasomes trigger caspase-dependent activation of the pore-forming protein, gasdermin D, and plasma membrane disruption. In this protocol, we describe a method to simultaneously detect two hallmarks of inflammasome-mediated pyroptosis. Using a fluorescently tagged inflammasome adaptor protein (ASC-Citrine) and membrane-impermeable nuclear dyes, we can track inflammasome formation and plasma membrane disruption over time in the same cell population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cookson BT, Brennan MA (2001) Pro-inflammatory programmed cell death [2]. Trends Microbiol 9:113–114.  https://doi.org/10.1016/s0966-842x(00)01936-3

  2. Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73:1907–1916.  https://doi.org/10.1128/IAI.73.4.1907-1916.2005

  3. Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16:407–420

    Article  CAS  Google Scholar 

  4. Zhao Y, Yang J, Shi J et al (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477:596–602. https://doi.org/10.1038/nature10510

    Article  CAS  PubMed  Google Scholar 

  5. Malik A, Kanneganti TD (2017) Inflammasome activation and assembly at a glance. J Cell Sci 130:3955–3963. https://doi.org/10.1242/jcs.207365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. de Alba E (2019) Structure, interactions and self-assembly of ASC-dependent inflammasomes. Arch Biochem Biophys 670:15–31

    Article  Google Scholar 

  7. Tzeng TC, Schattgen S, Monks B et al (2016) A fluorescent reporter mouse for Inflammasome assembly demonstrates an important role for cell-bound and free ASC specks during in vivo infection. Cell Rep 16:571–582. https://doi.org/10.1016/j.celrep.2016.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jorgensen I, Zhang Y, Krantz BA, Miao EA (2016) Pyroptosis triggers pore-induced intracellular traps (PITs) that capture bacteria and lead to their clearance by efferocytosis. J Exp Med 213:2113–2128. https://doi.org/10.1084/jem.20151613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Davis MA, Fairgrieve MR, den Hartigh A et al (2019) Calpain drives pyroptotic vimentin cleavage, intermediate filament loss, and cell rupture that mediates immunostimulation. Proc Natl Acad Sci U S A 116:5061–5070. https://doi.org/10.1073/pnas.1818598116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bergsbaken T, Fink SL, den Hartigh AB et al (2011) Coordinated host responses during Pyroptosis: Caspase-1–dependent lysosome exocytosis and inflammatory cytokine maturation. J Immunol 187:2748–2754. https://doi.org/10.4049/jimmunol.1100477

    Article  CAS  PubMed  Google Scholar 

  11. Fink SL, Cookson BT (2006) Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol 8:1812–1825. https://doi.org/10.1111/J.1462-5822.2006.00751.x

  12. Liu X, Zhang Z, Ruan J et al (2016) Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535:153–158. https://doi.org/10.1038/nature18629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shi J, Zhao Y, Wang K et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–665. https://doi.org/10.1038/nature15514

    Article  CAS  PubMed  Google Scholar 

  14. Evavold CL, Ruan J, Tan Y, et al. (2018) The pore-forming protein Gasdermin D regulates Interleukin-1 secretion from living macrophages. Immunity 48:35–44.e6. https://doi.org/10.1016/j.immuni.2017.11.013

  15. Kovacs SB, Miao EA (2017) Gasdermins: effectors of Pyroptosis. Trends Cell Biol 27:673–684

    Article  CAS  Google Scholar 

  16. Galluzzi L, Vitale I, Aaronson SA et al (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 25:486–541

    Article  Google Scholar 

  17. Wei Q, Mu K, Li T et al (2014) Deregulation of the NLRP3 inflammasome in hepatic parenchymal cells during liver cancer progression. Lab Investig 94:52–62. https://doi.org/10.1038/labinvest.2013.126

    Article  CAS  PubMed  Google Scholar 

  18. Gao J, Qiu X, Xi G et al (2018) Downregulation of GSDMD attenuates tumor proliferation via the intrinsic mitochondrial apoptotic pathway and inhibition of EGFR/Akt signaling and predicts a good prognosis in non-small cell lung cancer. Oncol Rep 40:1971–1984. https://doi.org/10.3892/or.2018.6634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang Z, Zhang Y, Lieberman J (2021) Lighting a fire: can we harness pyroptosis to ignite antitumor immunity? Cancer Immunol Res 9:2–7. https://doi.org/10.1158/2326-6066.CIR-20-0525

    Article  PubMed  PubMed Central  Google Scholar 

  20. Xia X, Wang X, Cheng Z et al (2019) The role of pyroptosis in cancer: pro-cancer or pro-“host”? Cell Death Dis 10:650. https://doi.org/10.1038/s41419-019-1883-8

  21. Karki R, Kanneganti TD (2019) Diverging inflammasome signals in tumorigenesis and potential targeting. Nat Rev Cancer 19:197–214

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan L. Fink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

den Hartigh, A.B., Fink, S.L. (2022). Simultaneous Detection of Inflammasome Activation and Membrane Damage During Pyroptosis. In: Barcenilla, H., Diaz, D. (eds) Apoptosis and Cancer. Methods in Molecular Biology, vol 2543. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2553-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2553-8_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2552-1

  • Online ISBN: 978-1-0716-2553-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics