Skip to main content

Using Synthetic Genetic Interactions in Candida glabrata as a Novel Method to Detect Genes with Roles in Antifungal Drug Resistance

  • Protocol
  • First Online:
Candida Species

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2542))

Abstract

Synthetic genetic interaction analysis is a powerful genetic strategy that analyzes the fitness and phenotypes of single- and double-gene mutant cells in order to dissect the interactions between genes, categorize into biological pathways, and characterize genes of unknown function. It has been extensively employed in model organisms for fundamental, systems-level assessment of the interactions between genes. However, more recently, genetic interaction mapping has been applied to fungal pathogens and has been instrumental for the study of clinically important infectious organisms. This protocol herein explains in the detail the methodology and analysis that can be employed to develop interaction maps in microbial pathogens. Such techniques can aid in bridging our understanding of complex genetic networks, with applications to diverse microbial pathogens to further our understanding of virulence, the use of antimicrobial therapies, and host–pathogen interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sopko R, Huang D, Preston N, Chua G, Papp B, Kafadar K et al (2006) Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell 21(3):319–330. https://doi.org/10.1016/j.molcel.2005.12.011

    Article  CAS  PubMed  Google Scholar 

  2. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285(5429):901–906

    Article  CAS  PubMed  Google Scholar 

  3. Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD et al (2001) Systematic genetics analysis with ordered arrays of yeast deletion mutants. Science 294:2364–2368

    Article  CAS  PubMed  Google Scholar 

  4. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS et al (2010) The genetic landscape of a cell. Science 327(January):425–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sharifpoor S, Van Dyk D, Costanzo M, Baryshnikova A, Friesen H, Douglas AC et al (2012) Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Res 22(4):791–801. https://doi.org/10.1101/gr.129213.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Forsburg SL (2001) The art and design of genetic screens: yeast. Nat Rev Genet 2(9):659–668. https://doi.org/10.1038/35088500

    Article  CAS  PubMed  Google Scholar 

  7. Hughes TR, de Boer CG (2013) Mapping yeast transcriptional networks. Genetics 195(1):9–36. https://doi.org/10.1534/genetics.113.153262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shou C, Bhardwaj N, Lam HYK, Yan K-K, Kim PM, Snyder M, Gerstein MB (2011) Measuring the evolutionary rewiring of biological networks. PLoS Comput Biol 7(1):e1001050. https://doi.org/10.1371/journal.pcbi.1001050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Uetz P, Giot L, Cagney G, Mans TA, Judson RS, Knight JR et al (2000) A comprehensive analysis of protein ± protein interactions in Saccharomyces cerevisiae. Nature 403(February):623–627

    Article  CAS  PubMed  Google Scholar 

  10. Zinovyev A, Kuperstein I, Barillot E, Heyer W-D (2013) Synthetic lethality between gene defects affecting a single non-essential molecular pathway with reversible steps. PLoS Comput Biol 9(4):e1003016. https://doi.org/10.1371/journal.pcbi.1003016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Sci Transl Med 4(165):1–10

    Article  Google Scholar 

  12. Hajjeh RA, Sofair AN, Harrison LH, Lyon GM, Arthington-skaggs BA, Mirza SA et al (2004) Incidence of bloodstream infections due to Candida species and in vitro susceptibilities of isolates collected from 1998 to 2000 in a population-based active surveillance program. J Clin Microbiol 42(4):1519–1527. https://doi.org/10.1128/JCM.42.4.1519

    Article  PubMed  PubMed Central  Google Scholar 

  13. Butler G, Rasmussen MD, Lin MF, Santos MAS, Sakthikumar S, Munro CA et al (2009) Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459(7247):657–662. https://doi.org/10.1038/nature08064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kaloriti D, Tillmann A, Cook E, Jacobsen M, You T, Lenardon M et al (2012) Combinatorial stresses kill pathogenic Candida species. Med Mycol 50(7):699–709. https://doi.org/10.3109/13693786.2012.672770

    Article  CAS  PubMed  Google Scholar 

  15. Wong S, Fares MA, Zimmermann W, Butler G, Wolfe KH (2003) Evidence from comparative genomics for a complete sexual cycle in the “asexual” pathogenic yeast Candida glabrata. Genome Biol 4(2):R10

    Article  PubMed  PubMed Central  Google Scholar 

  16. Baryshnikova A, Costanzo M, Yungil K, Ding H, Koh J, Toufighi K, Youn JY, Ou J, San Luis BJ, Bandyopadhyah S, Hibbs M, Hess D, Gingras A, Bader GD, Troyanskaya OG, Brown GW, Andrews B, Boones C, Myers CL (2010) Quantitative analysis of fitness and genetic interactions in yeast on a genome scale. Nat Methods 7(12):1017–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Usher J, Thomas G, Haynes K (2015) Utilising established SDL-screening methods as a tool for the functional genomic characterisation of model and non-model organisms. FEMS Yeast Res 15(8):fov091

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane Usher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Usher, J. (2022). Using Synthetic Genetic Interactions in Candida glabrata as a Novel Method to Detect Genes with Roles in Antifungal Drug Resistance. In: Calderone, R. (eds) Candida Species. Methods in Molecular Biology, vol 2542. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2549-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2549-1_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2548-4

  • Online ISBN: 978-1-0716-2549-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics