Skip to main content

Stiffness Measurement of Drosophila Egg Chambers by Atomic Force Microscopy

  • Protocol
  • First Online:
Drosophila

Abstract

Drosophila egg chamber development requires cellular and molecular mechanisms controlling morphogenesis. Previous research has shown that the mechanical properties of the basement membrane contribute to tissue elongation of the egg chamber. Here, we discuss how indentation with the microindenter of an atomic force microscope can be used to determine an effective stiffness value of a Drosophila egg chamber. We provide information on the preparation of egg chambers prior to the measurement, dish coating, the actual atomic force microscope measurement process, and data analysis. Furthermore, we discuss how to interpret acquired data and which mechanical components are expected to influence measured stiffness values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chlasta J, Milani P, Runel G et al (2017) Variations in basement membrane mechanics are linked to epithelial morphogenesis. Development 144:4350–4362

    CAS  PubMed  Google Scholar 

  2. Díaz de la Loza MC, Díaz-Torres A, Zurita F et al (2017) Laminin levels regulate tissue migration and anterior-posterior polarity during egg morphogenesis in Drosophila. Cell Rep 20:211–223

    Article  Google Scholar 

  3. King RC (1970) Ovarian development in Drosophila melanogaster. Academic Press, New York

    Google Scholar 

  4. Gates J (2012) Drosophila egg chamber elongation. Fly (Austin) 6:213–227

    Article  CAS  Google Scholar 

  5. Horne-Badovinac S, Bilder D (2005) Mass transit: Epithelial morphogenesis in theDrosophila egg chamber. Dev Dyn 232:559–574

    Article  CAS  Google Scholar 

  6. Horne-Badovinac S (2014) The Drosophila egg chamber–a new spin on how tissues elongate. Integr Comp Biol 54:667–676

    Article  CAS  Google Scholar 

  7. Viktorinová I, König T, Schlichting K et al (2009) The cadherin Fat2 is required for planar cell polarity in the Drosophila ovary. Development 136:4123 LP–4124132

    Article  Google Scholar 

  8. Barlan K, Cetera M, Horne-Badovinac S (2017) Fat2 and Lar define a basally localized planar signaling system controlling collective cell migration. Dev Cell 40:467–477.e5

    Article  CAS  Google Scholar 

  9. Frydman HM, Spradling AC (2001) The receptor-like tyrosine phosphatase lar is required for epithelial planar polarity and for axis determination within drosophila ovarian follicles. Development 128:3209–3220

    Article  CAS  Google Scholar 

  10. Haigo SL, Bilder D (2011) Global tissue revolutions in a morphogenetic movement controlling elongation. Science 331:1071–1074

    Article  CAS  Google Scholar 

  11. Crest J, Diz-Muñoz A, Chen D-Y et al (2017) Organ sculpting by patterned extracellular matrix stiffness. Elife 6:e24958

    Article  Google Scholar 

  12. Isabella AJ, Horne-Badovinac S (2015) Dynamic regulation of basement membrane protein levels promotes egg chamber elongation in Drosophila. Dev Biol 406:212–221

    Article  CAS  Google Scholar 

  13. Isabella AJ, Horne-Badovinac S (2016) Rab10-mediated secretion synergizes with tissue movement to build a polarized basement membrane architecture for organ morphogenesis. Dev Cell 38:47–60

    Article  CAS  Google Scholar 

  14. Töpfer U, Guerra Santillán KY, Fischer-Friedrich E, Dahmann C (2022) Development 149(10):dev200456. https://doi.org/10.1242/dev.200456

  15. Vella D, Ajdari A, Vaziri A et al (2011) The indentation of pressurized elastic shells: from polymeric capsules to yeast cells. J R Soc Interface 9:448

    Article  Google Scholar 

  16. Prasad M, Jang AC-C, Starz-Gaiano M et al (2007) A protocol for culturing Drosophila melanogaster stage 9 egg chambers for live imaging. Nat Protoc 2:2467–2473

    Article  CAS  Google Scholar 

  17. Huth S, Sindt S, Selhuber-Unkel C (2019) Automated analysis of soft hydrogel microindentation: Impact of various indentation parameters on the measurement of Young’s modulus. PLoS One 14:e0220281

    Article  CAS  Google Scholar 

  18. Hermanowicz P, Sarna M, Burda K et al (2014) AtomicJ: an open source software for analysis of force curves. Rev. Sci Instrum 85:63703

    Article  Google Scholar 

  19. Bilodeau GG (1992) Regular pyramid punch problem. J Appl Mech 59:519–523

    Article  Google Scholar 

  20. Sneddon IN (1965) The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57

    Article  Google Scholar 

  21. Rosenbluth MJ, Lam WA, Fletcher DA (2006) Force microscopy of nonadherent cells: a comparison of leukemia cell deformability. Biophys J 90:2994–3003

    Article  CAS  Google Scholar 

  22. Vella D, Ajdari A, Vaziri A et al (2012) Indentation of ellipsoidal and cylindrical elastic shells. Phys Rev Lett 109:144302

    Article  Google Scholar 

  23. Drummond-Barbosa D, Spradling AC (2001) Stem cells and their progeny respond to nutritional changes during drosophila oogenesis. Dev Biol 231:265–278

    Article  CAS  Google Scholar 

  24. Zhao R, Xuan Y, Li X et al (2008) Age-related changes of germline stem cell activity, niche signaling activity and egg production in Drosophila. Aging Cell 7:344–354

    Article  CAS  Google Scholar 

  25. Spradling AC (1993) Developmental genetics of oogenesis. In: The development of Drosophila melanogaster, pp. 1–70 Cold Spring Harbor Laboratory.

    Google Scholar 

  26. Jia D, Xu Q, Xie Q et al (2016) Automatic stage identification of Drosophila egg chamber based on DAPI images. Sci Rep 6:1–12

    Article  Google Scholar 

  27. Matei GA, Thoreson EJ, Pratt JR et al (2006) Precision and accuracy of thermal calibration of atomic force microscopy cantilevers. Rev Sci Instrum 77:83703

    Article  Google Scholar 

Download references

Acknowledgments

E.F.-F. was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2068 – 390729961– Cluster of Excellence Physics of Life of TU Dresden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Fischer-Friedrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Töpfer, U., Guerra Santillán, K.Y., Fischer-Friedrich, E. (2022). Stiffness Measurement of Drosophila Egg Chambers by Atomic Force Microscopy. In: Dahmann, C. (eds) Drosophila. Methods in Molecular Biology, vol 2540. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2541-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2541-5_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2540-8

  • Online ISBN: 978-1-0716-2541-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics