Skip to main content

Quantitative Detection of Protein Splice Variants by Selected Reaction Monitoring (SRM) Mass Spectrometry

  • Protocol
  • First Online:
Alternative Splicing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2537))

Abstract

Molecular diversification of the cellular proteome through alternative splicing has emerged as an important biological principle. However, the lack of tools to specifically detect and quantify proteoforms (Smith et al., Nat Methods 10:186–187, 2013) is a major impediment to functional studies. Recently, biological mass spectrometry (MS) has undergone impressive advances (Mann, Nat Rev Mol Cell Biol 17:678, 2016), including the generation of a highly diverse set of biological applications (Aebersold and Mann, Nature 537:347–355, 2016), and has demonstrated to be an essential tool to address many biological questions (Savitski et al., Science 346:1255784, 2014; Rinner et al., Nat Methods 5:315–318, 2008). In particular, targeted LC-MS, with its high selectivity and specificity, is ideally suited for the precise and sensitive quantification of specific proteins and their proteoforms (Picotti and Aebersold, Nat Methods 9:555–566, 2012). We describe in detail the application of this workflow applied to dissect the molecular diversity of the synaptic adhesion proteins and their splicing-derived proteoforms (Schreiner et al., Elife 4:e07794, 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456(7221):470–476. https://doi.org/10.1038/nature07509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, Madugundu AK, Kelkar DS, Isserlin R, Jain S, Thomas JK, Muthusamy B, Leal-Rojas P, Kumar P, Sahasrabuddhe NA, Balakrishnan L, Advani J, George B, Renuse S, Selvan LD, Patil AH, Nanjappa V, Radhakrishnan A, Prasad S, Subbannayya T, Raju R, Kumar M, Sreenivasamurthy SK, Marimuthu A, Sathe GJ, Chavan S, Datta KK, Subbannayya Y, Sahu A, Yelamanchi SD, Jayaram S, Rajagopalan P, Sharma J, Murthy KR, Syed N, Goel R, Khan AA, Ahmad S, Dey G, Mudgal K, Chatterjee A, Huang TC, Zhong J, Wu X, Shaw PG, Freed D, Zahari MS, Mukherjee KK, Shankar S, Mahadevan A, Lam H, Mitchell CJ, Shankar SK, Satishchandra P, Schroeder JT, Sirdeshmukh R, Maitra A, Leach SD, Drake CG, Halushka MK, Prasad TS, Hruban RH, Kerr CL, Bader GD, Iacobuzio-Donahue CA, Gowda H, Pandey A (2014) A draft map of the human proteome. Nature 509(7502):575–581. https://doi.org/10.1038/nature13302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Smith LM, Kelleher NL, Consortium for Top Down P (2013) Proteoform: a single term describing protein complexity. Nat Methods 10(3):186–187. https://doi.org/10.1038/nmeth.2369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baralle FE, Giudice J (2017) Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol 18(7):437–451. https://doi.org/10.1038/nrm.2017.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Scotti MM, Swanson MS (2016) RNA mis-splicing in disease. Nat Rev Genet 17(1):19–32. https://doi.org/10.1038/nrg.2015.3

    Article  CAS  PubMed  Google Scholar 

  6. Chen BE, Kondo M, Garnier A, Watson FL, Puettmann-Holgado R, Lamar DR, Schmucker D (2006) The molecular diversity of Dscam is functionally required for neuronal wiring specificity in Drosophila. Cell 125(3):607–620. https://doi.org/10.1016/j.cell.2006.03.034

    Article  CAS  PubMed  Google Scholar 

  7. Schreiner D, Nguyen TM, Russo G, Heber S, Patrignani A, Ahrne E, Scheiffele P (2014) Targeted combinatorial alternative splicing generates brain region-specific repertoires of neurexins. Neuron 84(2):386–398. https://doi.org/10.1016/j.neuron.2014.09.011

    Article  CAS  PubMed  Google Scholar 

  8. Mann M (2016) Origins of mass spectrometry-based proteomics. Nat Rev Mol Cell Biol 17(11):678. https://doi.org/10.1038/nrm.2016.135

    Article  CAS  PubMed  Google Scholar 

  9. Aebersold R, Mann M (2016) Mass-spectrometric exploration of proteome structure and function. Nature 537(7620):347–355. https://doi.org/10.1038/nature19949

    Article  CAS  PubMed  Google Scholar 

  10. Savitski MM, Reinhard FB, Franken H, Werner T, Savitski MF, Eberhard D, Martinez Molina D, Jafari R, Dovega RB, Klaeger S, Kuster B, Nordlund P, Bantscheff M, Drewes G (2014) Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346(6205):1255784. https://doi.org/10.1126/science.1255784

    Article  CAS  PubMed  Google Scholar 

  11. Rinner O, Seebacher J, Walzthoeni T, Mueller LN, Beck M, Schmidt A, Mueller M, Aebersold R (2008) Identification of cross-linked peptides from large sequence databases. Nat Methods 5(4):315–318. https://doi.org/10.1038/nmeth.1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Picotti P, Aebersold R (2012) Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 9(6):555–566. https://doi.org/10.1038/nmeth.2015

    Article  CAS  PubMed  Google Scholar 

  13. Schreiner D, Simicevic J, Ahrne E, Schmidt A, Scheiffele P (2015) Quantitative isoform-profiling of highly diversified recognition molecules. elife 4:e07794. https://doi.org/10.7554/eLife.07794

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lange V, Picotti P, Domon B, Aebersold R (2008) Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 4:222. https://doi.org/10.1038/msb.2008.61

    Article  PubMed  PubMed Central  Google Scholar 

  15. Maiolica A, Junger MA, Ezkurdia I, Aebersold R (2012) Targeted proteome investigation via selected reaction monitoring mass spectrometry. J Proteome 75(12):3495–3513. https://doi.org/10.1016/j.jprot.2012.04.048

    Article  CAS  Google Scholar 

  16. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A 100(12):6940–6945. https://doi.org/10.1073/pnas.0832254100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999. https://doi.org/10.1038/13690

    Article  CAS  PubMed  Google Scholar 

  18. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386. https://doi.org/10.1074/mcp.m200025-mcp200

    Article  CAS  PubMed  Google Scholar 

  19. Picotti P, Bodenmiller B, Mueller LN, Domon B, Aebersold R (2009) Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138(4):795–806. https://doi.org/10.1016/j.cell.2009.05.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M, Savitski MM, Ziegler E, Butzmann L, Gessulat S, Marx H, Mathieson T, Lemeer S, Schnatbaum K, Reimer U, Wenschuh H, Mollenhauer M, Slotta-Huspenina J, Boese JH, Bantscheff M, Gerstmair A, Faerber F, Kuster B (2014) Mass-spectrometry-based draft of the human proteome. Nature 509(7502):582–587. https://doi.org/10.1038/nature13319

    Article  CAS  PubMed  Google Scholar 

  21. Schaab C, Geiger T, Stoehr G, Cox J, Mann M (2012) Analysis of high accuracy, quantitative proteomics data in the MaxQB database. Mol Cell Proteomics 11(3):M111.014068. https://doi.org/10.1074/mcp.M111.014068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, Griss J, Mayer G, Eisenacher M, Perez E, Uszkoreit J, Pfeuffer J, Sachsenberg T, Yilmaz S, Tiwary S, Cox J, Audain E, Walzer M, Jarnuczak AF, Ternent T, Brazma A, Vizcaino JA (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 47(D1):D442–D450. https://doi.org/10.1093/nar/gky1106

    Article  CAS  PubMed  Google Scholar 

  23. Kusebauch U, Campbell DS, Deutsch EW, Chu CS, Spicer DA, Brusniak MY, Slagel J, Sun Z, Stevens J, Grimes B, Shteynberg D, Hoopmann MR, Blattmann P, Ratushny AV, Rinner O, Picotti P, Carapito C, Huang CY, Kapousouz M, Lam H, Tran T, Demir E, Aitchison JD, Sander C, Hood L, Aebersold R, Moritz RL (2016) Human SRMAtlas: a resource of targeted assays to quantify the complete human proteome. Cell 166(3):766–778. https://doi.org/10.1016/j.cell.2016.06.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zauber H, Kirchner M, Selbach M (2018) Picky: a simple online PRM and SRM method designer for targeted proteomics. Nat Methods 15(3):156–157. https://doi.org/10.1038/nmeth.4607

    Article  CAS  PubMed  Google Scholar 

  25. Brusniak MY, Kwok ST, Christiansen M, Campbell D, Reiter L, Picotti P, Kusebauch U, Ramos H, Deutsch EW, Chen J, Moritz RL, Aebersold R (2011) ATAQS: a computational software tool for high throughput transition optimization and validation for selected reaction monitoring mass spectrometry. BMC Bioinformatics 12:78. https://doi.org/10.1186/1471-2105-12-78

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nahnsen S, Kohlbacher O (2012) In silico design of targeted SRM-based experiments. BMC Bioinformatics 13(Suppl 16):S8. https://doi.org/10.1186/1471-2105-13-S16-S8

    Article  PubMed  PubMed Central  Google Scholar 

  27. Reiter L, Rinner O, Picotti P, Huttenhain R, Beck M, Brusniak MY, Hengartner MO, Aebersold R (2011) mProphet: automated data processing and statistical validation for large-scale SRM experiments. Nat Methods 8(5):430–435. https://doi.org/10.1038/nmeth.1584

    Article  CAS  PubMed  Google Scholar 

  28. MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, Kern R, Tabb DL, Liebler DC, MacCoss MJ (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26(7):966–968. https://doi.org/10.1093/bioinformatics/btq054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gomez AM, Traunmuller L, Scheiffele P (2021) Neurexins: molecular codes for shaping neuronal synapses. Nat Rev Neurosci 22(3):137–151. https://doi.org/10.1038/s41583-020-00415-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shi T, Song E, Nie S, Rodland KD, Liu T, Qian WJ, Smith RD (2016) Advances in targeted proteomics and applications to biomedical research. Proteomics 16(15–16):2160–2182. https://doi.org/10.1002/pmic.201500449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kusebauch U, Deutsch EW, Campbell DS, Sun Z, Farrah T, Moritz RL (2014) Using PeptideAtlas, SRMAtlas, and PASSEL: comprehensive resources for discovery and targeted proteomics. Curr Protoc Bioinformatics 46:13.25.11–13.25.28. https://doi.org/10.1002/0471250953.bi1325s46

    Article  Google Scholar 

  32. Whiteaker JR, Halusa GN, Hoofnagle AN, Sharma V, MacLean B, Yan P, Wrobel JA, Kennedy J, Mani DR, Zimmerman LJ, Meyer MR, Mesri M, Rodriguez H, Clinical Proteomic Tumor Analysis C, Paulovich AG (2014) CPTAC assay portal: a repository of targeted proteomic assays. Nat Methods 11 (7):703–704. https://doi.org/10.1038/nmeth.3002

  33. Sharma V, Eckels J, Schilling B, Ludwig C, Jaffe JD, MacCoss MJ, MacLean B (2018) Panorama public: a public repository for quantitative data sets processed in skyline. Mol Cell Proteomics 17(6):1239–1244. https://doi.org/10.1074/mcp.RA117.000543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bhowmick P, Mohammed Y, Borchers CH (2018) MRMAssayDB: an integrated resource for validated targeted proteomics assays. Bioinformatics 34(20):3566–3571. https://doi.org/10.1093/bioinformatics/bty385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bhowmick P, Roome S, Borchers CH, Goodlett DR, Mohammed Y (2021) An update on MRMAssayDB: a comprehensive resource for targeted proteomics assays in the community. J Proteome Res 20(4):2105–2115. https://doi.org/10.1021/acs.jproteome.0c00961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schmidt T, Samaras P, Frejno M, Gessulat S, Barnert M, Kienegger H, Krcmar H, Schlegl J, Ehrlich HC, Aiche S, Kuster B, Wilhelm M (2018) ProteomicsDB. Nucleic Acids Res 46(D1):D1271–D1281. https://doi.org/10.1093/nar/gkx1029

    Article  CAS  PubMed  Google Scholar 

  37. Gessulat S, Schmidt T, Zolg DP, Samaras P, Schnatbaum K, Zerweck J, Knaute T, Rechenberger J, Delanghe B, Huhmer A, Reimer U, Ehrlich HC, Aiche S, Kuster B, Wilhelm M (2019) Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning. Nat Methods 16(6):509–518. https://doi.org/10.1038/s41592-019-0426-7

    Article  CAS  PubMed  Google Scholar 

  38. Desiere F, Deutsch EW, King NL, Nesvizhskii AI, Mallick P, Eng J, Chen S, Eddes J, Loevenich SN, Aebersold R (2006) The PeptideAtlas project. Nucleic Acids Res 34(Database issue):D655–D658. https://doi.org/10.1093/nar/gkj040

    Article  CAS  PubMed  Google Scholar 

  39. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. https://doi.org/10.1038/nbt.1511

    Article  CAS  PubMed  Google Scholar 

  40. Addona TA, Abbatiello SE, Schilling B, Skates SJ, Mani DR, Bunk DM, Spiegelman CH, Zimmerman LJ, Ham AJ, Keshishian H, Hall SC, Allen S, Blackman RK, Borchers CH, Buck C, Cardasis HL, Cusack MP, Dodder NG, Gibson BW, Held JM, Hiltke T, Jackson A, Johansen EB, Kinsinger CR, Li J, Mesri M, Neubert TA, Niles RK, Pulsipher TC, Ransohoff D, Rodriguez H, Rudnick PA, Smith D, Tabb DL, Tegeler TJ, Variyath AM, Vega-Montoto LJ, Wahlander A, Waldemarson S, Wang M, Whiteaker JR, Zhao L, Anderson NL, Fisher SJ, Liebler DC, Paulovich AG, Regnier FE, Tempst P, Carr SA (2009) Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat Biotechnol 27(7):633–641. https://doi.org/10.1038/nbt.1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ (2012) Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics 11(11):1475–1488. https://doi.org/10.1074/mcp.O112.020131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gallien S, Duriez E, Crone C, Kellmann M, Moehring T, Domon B (2012) Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer. Mol Cell Proteomics 11(12):1709–1723. https://doi.org/10.1074/mcp.O112.019802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schnatbaum K, Zerweck J, Nehmer J, Wenschuh H, Schutkowski M, Reimer U (2011) SpikeTides™—proteotypic peptides for large-scale MS-based proteomics. Nat Methods 8(3):i–ii. https://doi.org/10.1038/nmeth.f.337

    Article  CAS  Google Scholar 

  44. Glatter T, Ludwig C, Ahrne E, Aebersold R, Heck AJ, Schmidt A (2012) Large-scale quantitative assessment of different in-solution protein digestion protocols reveals superior cleavage efficiency of tandem Lys-C/trypsin proteolysis over trypsin digestion. J Proteome Res 11(11):5145–5156. https://doi.org/10.1021/pr300273g

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Schmidt .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Supplementary Table 1

Suppl_Table_1 (XLSX 22 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schmidt, A., Schreiner, D. (2022). Quantitative Detection of Protein Splice Variants by Selected Reaction Monitoring (SRM) Mass Spectrometry. In: Scheiffele, P., Mauger, O. (eds) Alternative Splicing. Methods in Molecular Biology, vol 2537. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2521-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2521-7_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2520-0

  • Online ISBN: 978-1-0716-2521-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics