Skip to main content

Two-Color Fluorescent Reporters for Analysis of Alternative Splicing

  • Protocol
  • First Online:
Alternative Splicing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2537))

Abstract

Alternative splicing is a key layer of gene regulation that is frequently modulated in a spatiotemporal manner. As such, it is a major goal to understand the mechanisms controlling alternative splicing in specific cellular contexts. Reporters that recapitulate alternative splicing patterns of endogenous transcripts have served as excellent tools for dissecting regulatory mechanisms of splicing. In this chapter, we describe a two-color fluorescent reporter system that enables the visualization of alternative splicing patterns by microscopy at single-cell resolution in live animals. We present this reporter system in the context of the model nematode C. elegans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore MJ (2005) From birth to death: the complex lives of eukaryotic mRNAs. Science 309:1514–1518

    Article  CAS  Google Scholar 

  2. Gilbert W (1978) Why genes in pieces? Nature

    Google Scholar 

  3. Keren H, Lev-Maor G, Ast G (2010) Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet 11:345–355

    Article  CAS  Google Scholar 

  4. Lee Y, Rio DC (2015) Mechanisms and regulation of alternative pre-mRNA splicing. Annu Rev Biochem 84:291–323. https://doi.org/10.1146/annurev-biochem-060614-034316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ramani AK, Calarco JA, Pan Q et al (2011) Genome-wide analysis of alternative splicing in Caenorhabditis elegans. Genome Res 21:342–348. https://doi.org/10.1101/gr.114645.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang ET, Sandberg R, Luo S et al (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476. https://doi.org/10.1038/nature07509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pan Q, Shai O, Lee LJ et al (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415. https://doi.org/10.1038/ng.259

    Article  CAS  PubMed  Google Scholar 

  8. Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463(7280):457–463

    Article  CAS  Google Scholar 

  9. Kalsotra A, Cooper TA (2011) Functional consequences of developmentally regulated alternative splicing. Nat Rev Genet 12:715–729

    Article  CAS  Google Scholar 

  10. Baralle FE, Giudice J (2017) Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol 18(7):437–451

    Article  CAS  Google Scholar 

  11. Raj B, Blencowe BJ (2015) Alternative splicing in the mammalian nervous system: recent insights into mechanisms and functional roles. Neuron 87:14–27

    Article  CAS  Google Scholar 

  12. Vuong CK, Black DL, Zheng S (2016) The neurogenetics of alternative splicing. Nat Rev Neurosci 17:265–281

    Article  CAS  Google Scholar 

  13. Furlanis E, Traunmüller L, Fucile G, Scheiffele P (2019) Landscape of ribosome-engaged transcript isoforms reveals extensive neuronal-cell-class-specific alternative splicing programs. Nat Neurosci 22:1709–1717. https://doi.org/10.1038/s41593-019-0465-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Joglekar A, Prjibelski A, Mahfouz A et al (2021) A spatially resolved brain region- and cell type-specific isoform atlas of the postnatal mouse brain. Nat Commun 12(1):463. https://doi.org/10.1038/s41467-020-20343-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ha KCH, Sterne-Weiler T, Morris Q et al (2021) Differential contribution of transcriptomic regulatory layers in the definition of neuronal identity. Nat Commun 12(1):335. https://doi.org/10.1038/s41467-020-20483-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Koterniak B, Pilaka PP, Gracida X et al (2020) Global regulatory features of alternative splicing across tissues and within the nervous system of C. elegans. Genome Res 30:1766–1780. https://doi.org/10.1101/gr.267328.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang Q, Abruzzi KC, Rosbash M, Rio DC (2018) Striking circadian neuron diversity and cycling of Drosophila alternative splicing. elife 7:e35618. https://doi.org/10.7554/eLife.35618

    Article  PubMed  PubMed Central  Google Scholar 

  18. Scotti MM, Swanson MS (2016) RNA mis-splicing in disease. Nat Rev Genet 17(1):19–32

    Article  CAS  Google Scholar 

  19. Gonatopoulos-Pournatzis T, Wu M, Braunschweig U et al (2018) Genome-wide CRISPR-Cas9 interrogation of splicing networks reveals a mechanism for recognition of autism-misregulated neuronal microexons. Mol Cell 72:510–524.e12. https://doi.org/10.1016/j.molcel.2018.10.008

    Article  CAS  PubMed  Google Scholar 

  20. Stoilov P, Lin CH, Damoiseaux R et al (2008) A high-throughput screening strategy identifies cardiotonic steroids as alternative splicing modulators. Proc Natl Acad Sci U S A 105(32):11218–11223. https://doi.org/10.1073/pnas.0801661105

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang Z, Rolish ME, Yeo G et al (2004) Systematic identification and analysis of exonic splicing silencers. Cell 119(6):831–845. https://doi.org/10.1016/j.cell.2004.11.010

    Article  CAS  PubMed  Google Scholar 

  22. Rosenberg AB, Patwardhan RP, Shendure J, Seelig G (2015) Learning the sequence determinants of alternative splicing from millions of random sequences. Cell 163(3):698–711. https://doi.org/10.1016/j.cell.2015.09.054

    Article  CAS  PubMed  Google Scholar 

  23. Cooper TA (2005) Use of minigene systems to dissect alternative splicing elements. Methods 37(4):331–340. https://doi.org/10.1016/j.ymeth.2005.07.015

    Article  CAS  PubMed  Google Scholar 

  24. Orengo JP, Bundman D, Cooper TA (2006) A bichromatic fluorescent reporter for cell-based screens of alternative splicing. Nucleic Acids Res 34(22):e148. https://doi.org/10.1093/nar/gkl967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Norris AD, Gao S, Norris ML et al (2014) A pair of RNA-binding proteins controls networks of splicing events contributing to specialization of neural cell types. Mol Cell 54:946–959. https://doi.org/10.1016/j.molcel.2014.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thompson M, Bixby R, Dalton R et al (2019) Splicing in a single neuron is coordinately controlled by RNA binding proteins and transcription factors. elife 8:e46726. https://doi.org/10.7554/eLife.46726

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kuroyanagi H, Watanabe Y, Hagiwara M (2013) CELF family RNA-binding protein UNC-75 regulates two sets of mutually exclusive exons of the unc-32 gene in neuron-specific manners in Caenorhabditis elegans. PLoS Genet 9(2):e1003337. https://doi.org/10.1371/journal.pgen.1003337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kuroyanagi H, Kobayashi T, Mitani S, Hagiwara M (2006) Transgenic alternative-splicing reporters reveal tissue-specific expression profiles and regulation mechanisms in vivo. Nat Methods 3(11):909–915. https://doi.org/10.1038/nmeth944

    Article  CAS  PubMed  Google Scholar 

  29. Amrane S, Rebora K, Zniber I et al (2014) Backbone-independent nucleic acid binding by splicing factor SUP-12 reveals key aspects of molecular recognition. Nat Commun 5:4595. https://doi.org/10.1038/ncomms5595

    Article  CAS  PubMed  Google Scholar 

  30. Gracida X, Norris AD, Calarco JA (2016) Regulation of tissue-specifi c alternative splicing: C. elegans as a model system. In: Advances in experimental medicine and biology. Springer, pp 229–261

    Google Scholar 

  31. Zahler AM (2012) Pre-mRNA splicing and its regulation in Caenorhabditis elegans. WormBook 1–21

    Google Scholar 

  32. Wani S, Kuroyanagi H (2017) An emerging model organism Caenorhabditis elegans for alternative pre-mRNA processing in vivo. Wiley Interdiscip Rev RNA 8

    Google Scholar 

  33. Evans T (2006) Transformation and microinjection. WormBook. https://doi.org/10.1895/wormbook.1.108.1

Download references

Acknowledgments

We would like to thank Dovic King and Lisa-Marie Schneider for their help with developing our updated two-color splicing reporters. Our research is currently supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Institutes of Health Research (CIHR), the Canada First Research Excellence Fund (CFREF), the Canada Research Chairs program (CRC), the Canada Foundation for Innovation (CFI), and the Ontario Research Foundation (ORF) and we are grateful for their generous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Calarco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Calarco, J.A., Pilaka-Akella, P.P. (2022). Two-Color Fluorescent Reporters for Analysis of Alternative Splicing. In: Scheiffele, P., Mauger, O. (eds) Alternative Splicing. Methods in Molecular Biology, vol 2537. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2521-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2521-7_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2520-0

  • Online ISBN: 978-1-0716-2521-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics