Skip to main content

In Vivo Imaging of Oxidative and Hypoxic Stresses in Mice Model of Amyotrophic Lateral Sclerosis

  • Protocol
  • First Online:
Bioluminescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2525))

Abstract

Oxidative and hypoxic stresses are associated with the degeneration of both motor neurons and skeletal muscles in amyotrophic lateral sclerosis (ALS). In vivo bioluminescent imaging is used to monitor cellular responses to oxidative and hypoxic stresses in living ALS model mice bearing G93A-human Cu/Zn superoxide dismutase (SOD1) longitudinally using the IVIS spectrum imaging system. Double transgenic mice bearing both Keap1-dependent oxidative stress detector No-48 (OKD48) and G93A-SOD1 are useful for in vivo imaging of oxidative stress in ALS. We developed a bioluminescence resonance energy transfer (BRET) probe that is regulated by HIF-1α-specific ubiquitin-proteasome system. G93A-SOD1 mice injected with the BRET probe are useful to investigate the spatiotemporal responses to hypoxic stress in ALS. In this chapter, we introduce a practical protocol of in vivo imaging of both oxidative and hypoxic stress in ALS model mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosen DR (1993) Mutations in cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 364(6435):362. https://doi.org/10.1038/364362c0

    Article  CAS  PubMed  Google Scholar 

  2. Aoki M, Ogasawara M, Matsubara Y, Narisawa K, Nakamura S, Itoyama Y, Abe K (1993) Mild ALS in Japan associated with novel SOD mutation. Nat Genet 5(4):323–324. https://doi.org/10.1038/ng1293-323

    Article  CAS  PubMed  Google Scholar 

  3. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264(5166):1772–1775. https://doi.org/10.1126/science.8209258

    Article  CAS  PubMed  Google Scholar 

  4. Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, Sisodia SS, Cleveland DW, Price DL (1995) An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14(6):1105–1116. https://doi.org/10.1016/0896-6273(95)90259-7

    Article  CAS  PubMed  Google Scholar 

  5. Lopez-Gonzalez R, Lu Y, Gendron TF, Karydas A, Tran H, Yang D, Petrucelli L, Miller BL, Almeida S, Gao FB (2016) Poly(GR) in C9ORF72-related ALS/FTD compromises mitochondrial function and increases oxidative stress and DNA damage in iPSC-derived motor neurons. Neuron 92(2):383–391. https://doi.org/10.1016/j.neuron.2016.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moujalled D, Grubman A, Acevedo K, Yang S, Ke YD, Moujalled DM, Duncan C, Caragounis A, Perera ND, Turner BJ, Prudencio M, Petrucelli L, Blair I, Ittner LM, Crouch PJ, Liddell JR, White AR (2017) TDP-43 mutations causing amyotrophic lateral sclerosis are associated with altered expression of RNA-binding protein hnRNP K and affect the Nrf2 antioxidant pathway. Hum Mol Genet 26(9):1732–1746. https://doi.org/10.1093/hmg/ddx093

    Article  CAS  PubMed  Google Scholar 

  7. Ilieva H, Nagano I, Murakami T, Shiote M, Shoji M, Abe K (2003) Sustained induction of survival p-AKT and p-ERK signals after transient hypoxia in mice spinal cord with G93A mutant human SOD1 protein. J Neurol Sci 215(1–2):57–62. https://doi.org/10.1016/s0022-510x(03)00186-2

    Article  CAS  PubMed  Google Scholar 

  8. Kim SM, Kim H, Lee JS, Park KS, Jeon GS, Shon J, Ahn SW, Kim SH, Lee KM, Sung JJ, Lee KW (2013) Intermittent hypoxia can aggravate motor neuronal loss and cognitive dysfunction in ALS mice. PLoS One 8(11):e81808. https://doi.org/10.1371/journal.pone.0081808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tsitkanou S, Della Gatta PA, Russell AP (2016) Skeletal muscle satellite cells, mitochondria, and microRNAs: their involvement in the pathogenesis of ALS. Front Physiol 7:403. https://doi.org/10.3389/fphys.2016.00403

    Article  PubMed  PubMed Central  Google Scholar 

  10. Loeffler JP, Picchiarelli G, Dupuis L, Gonzalez De Aguilar JL (2016) The role of skeletal muscle in amyotrophic lateral sclerosis. Brain Pathol 26(2):227–236. https://doi.org/10.1111/bpa.12350

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ohta Y, Nomura E, Shang J, Feng T, Huang Y, Liu X, Shi X, Nakano Y, Hishikawa N, Sato K, Takemoto M, Yamashita T, Abe K (2019) Enhanced oxidative stress and the treatment by edaravone in mice model of amyotrophic lateral sclerosis. J Neurosci Res 97(5):607–619. https://doi.org/10.1002/jnr.24368

    Article  CAS  PubMed  Google Scholar 

  12. Nomura E, Ohta Y, Tadokoro K, Shang J, Feng T, Liu X, Shi X, Matsumoto N, Sasaki R, Tsunoda K, Sato K, Takemoto M, Hishikawa N, Yamashita T, Kuchimaru T, Kizaka-Kondoh S, Abe K (2019) Imaging hypoxic stress and the treatment of amyotrophic lateral sclerosis with dimethyloxalylglycine in a mice model. Neuroscience 415:31–43. https://doi.org/10.1016/j.neuroscience.2019.06.025

    Article  CAS  PubMed  Google Scholar 

  13. Petri S, Korner S, Kiaei M (2012) Nrf2/ARE signaling pathway: key mediator in oxidative stress and potential therapeutic target in ALS. Neurol Res Int 2012:878030. https://doi.org/10.1155/2012/878030

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mead RJ, Higginbottom A, Allen SP, Kirby J, Bennett E, Barber SC, Heath PR, Coluccia A, Patel N, Gardner I, Brancale A, Grierson AJ, Shaw PJ (2013) S[+] Apomorphine is a CNS penetrating activator of the Nrf2-ARE pathway with activity in mouse and patient fibroblast models of amyotrophic lateral sclerosis. Free Radic Biol Med 61:438–452. https://doi.org/10.1016/j.freeradbiomed.2013.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oikawa D, Akai R, Tokuda M, Iwawaki T (2012) A transgenic mouse model for monitoring oxidative stress. Sci Rep 2:229. https://doi.org/10.1038/srep00229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang LE, Arany Z, Livingston DM, Bunn HF (1996) Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem 271(50):32253–32259. https://doi.org/10.1074/jbc.271.50.32253

    Article  CAS  PubMed  Google Scholar 

  17. Harada H, Hiraoka M, Kizaka-Kondoh S (2002) Antitumor effect of TAT-oxygen-dependent degradation-caspase-3 fusion protein specifically stabilized and activated in hypoxic tumor cells. Cancer Res 62(7):2013–2018

    CAS  PubMed  Google Scholar 

  18. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107(1):43–54. https://doi.org/10.1016/s0092-8674(01)00507-4

    Article  CAS  PubMed  Google Scholar 

  19. Wu C, Mino K, Akimoto H, Kawabata M, Nakamura K, Ozaki M, Ohmiya Y (2009) In vivo far-red luminescence imaging of a biomarker based on BRET from Cypridina bioluminescence to an organic dye. Proc Natl Acad Sci U S A 106(37):15599–15603. https://doi.org/10.1073/pnas.0908594106

    Article  PubMed  PubMed Central  Google Scholar 

  20. Xiong L, Shuhendler AJ, Rao J (2012) Self-luminescing BRET-FRET near-infrared dots for in vivo lymph-node mapping and tumour imaging. Nat Commun 3:1193. https://doi.org/10.1038/ncomms2197

    Article  CAS  PubMed  Google Scholar 

  21. Kuchimaru T, Suka T, Hirota K, Kadonosono T, Kizaka-Kondoh S (2016) A novel injectable BRET-based in vivo imaging probe for detecting the activity of hypoxia-inducible factor regulated by the ubiquitin-proteasome system. Sci Rep 6:34311. https://doi.org/10.1038/srep34311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakano Y, Yamashita T, Li Q, Sato K, Ohta Y, Morihara R, Hishikawa N, Abe K (2017) Time-dependent change of in vivo optical imaging of oxidative stress in a mouse stroke model. J Neurosci Res 95(10):2030–2039. https://doi.org/10.1002/jnr.24047

    Article  CAS  PubMed  Google Scholar 

  23. Shi X, Ohta Y, Nakano Y, Liu X, Tadokoro K, Feng T, Nomura E, Tsunoda K, Sasaki R, Matsumoto N, Osakada Y, Bian Y, Bian Z, Omote Y, Takemoto M, Hishikawa N, Yamashita T, Abe K (2021) Neuroprotective effect of CuATSM in mice stroke model by ameliorating oxidative stress. Neurosci Res 166:55–61. https://doi.org/10.1016/j.neures.2020.05.009

    Article  CAS  PubMed  Google Scholar 

  24. Ohta Y, Nagai M, Miyazaki K, Tanaka N, Kawai H, Mimoto T, Morimoto N, Kurata T, Ikeda Y, Matsuura T, Abe K (2011) Neuroprotective and angiogenic effects of bone marrow transplantation combined with granulocyte colony-stimulating factor in a mouse model of amyotrophic lateral sclerosis. Cell Med 2(2):69–83. https://doi.org/10.3727/215517910X582779

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was partly supported by a Grant-in-Aid for Scientific Research (B) 17H0419619, (C) 15K0931607, 17H0419619, and 17K1082709 and by Grants-in-Aid from the Research Committees (Kaji R, Toba K, and Tsuji S) from the Japan Agency for Medical Research and Development (AMED) 7211700176, 7211700180, and 7211700095.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuyuki Ohta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ohta, Y., Nomura, E., Kizaka-Kondoh, S., Abe, K. (2022). In Vivo Imaging of Oxidative and Hypoxic Stresses in Mice Model of Amyotrophic Lateral Sclerosis. In: Kim, SB. (eds) Bioluminescence. Methods in Molecular Biology, vol 2525. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2473-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2473-9_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2472-2

  • Online ISBN: 978-1-0716-2473-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics